Littérature scientifique sur le sujet « Gene network reconstruction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gene network reconstruction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Gene network reconstruction"
Bhola, Abhishek, et Sandeep Mittal. « Reconstruction of Gene Regulatory Network using Bayesian Network ». IOP Conference Series : Materials Science and Engineering 1042, no 1 (1 janvier 2021) : 012009. http://dx.doi.org/10.1088/1757-899x/1042/1/012009.
Texte intégralSoinov, L. A. « Supervised classification for gene network reconstruction ». Biochemical Society Transactions 31, no 6 (1 décembre 2003) : 1497–502. http://dx.doi.org/10.1042/bst0311497.
Texte intégralOrlov, Y. L., A. G. Galieva, N. G. Orlova, E. N. Ivanova, Y. A. Mozyleva et A. A. Anashkina. « Reconstruction of gene network associated with Parkinson disease for gene targets search ». Biomeditsinskaya Khimiya 67, no 3 (2021) : 222–30. http://dx.doi.org/10.18097/pbmc20216703222.
Texte intégralManshaei, Roozbeh, Pooya Sobhe Bidari, Mahdi Aliyari Shoorehdeli, Amir Feizi, Tahmineh Lohrasebi, Mohammad Ali Malboobi, Matthew Kyan et Javad Alirezaie. « Hybrid-Controlled Neurofuzzy Networks Analysis Resulting in Genetic Regulatory Networks Reconstruction ». ISRN Bioinformatics 2012 (1 novembre 2012) : 1–16. http://dx.doi.org/10.5402/2012/419419.
Texte intégralBansal, Bhavana, Aparajita Nanda et Anita Sahoo. « Intelligent Framework With Controlled Behavior for Gene Regulatory Network Reconstruction ». International Journal of Information Retrieval Research 12, no 1 (janvier 2022) : 1–17. http://dx.doi.org/10.4018/ijirr.2022010104.
Texte intégralANDRECUT, M., S. A. KAUFFMAN et A. M. MADNI. « EVIDENCE OF SCALE-FREE TOPOLOGY IN GENE REGULATORY NETWORK OF HUMAN TISSUES ». International Journal of Modern Physics C 19, no 02 (février 2008) : 283–90. http://dx.doi.org/10.1142/s0129183108012091.
Texte intégralThompson, Dawn, Aviv Regev et Sushmita Roy. « Comparative Analysis of Gene Regulatory Networks : From Network Reconstruction to Evolution ». Annual Review of Cell and Developmental Biology 31, no 1 (13 novembre 2015) : 399–428. http://dx.doi.org/10.1146/annurev-cellbio-100913-012908.
Texte intégralBhyratae, Suhas A. « Reconstruction of Gene Regulatory Network for Colon Cancer Dataset ». International Journal for Research in Applied Science and Engineering Technology 10, no 7 (31 juillet 2022) : 3711–16. http://dx.doi.org/10.22214/ijraset.2022.45879.
Texte intégralDi Filippo, Marzia, Chiara Damiani et Dario Pescini. « GPRuler : Metabolic gene-protein-reaction rules automatic reconstruction ». PLOS Computational Biology 17, no 11 (8 novembre 2021) : e1009550. http://dx.doi.org/10.1371/journal.pcbi.1009550.
Texte intégralLeday, Gwenaël G. R., Mathisca C. M. de Gunst, Gino B. Kpogbezan, Aad W. van der Vaart, Wessel N. van Wieringen et Mark A. van de Wiel. « Gene network reconstruction using global-local shrinkage priors ». Annals of Applied Statistics 11, no 1 (mars 2017) : 41–68. http://dx.doi.org/10.1214/16-aoas990.
Texte intégralThèses sur le sujet "Gene network reconstruction"
ACERBI, ENZO. « Continuos time Bayesian networks for gene networks reconstruction ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/52709.
Texte intégralFichtenholtz, Alexander Michael. « In silico bacterial gene regulatory network reconstruction from sequence ». Thesis, Boston University, 2012. https://hdl.handle.net/2144/32880.
Texte intégralPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
DNA sequencing techniques have evolved to the point where one can sequence millions of bases per minute, while our capacity to use this information has been left behind. One particularly notorious example is in the area of gene regulatory networks. A molecular study of gene regulation proceeds one protein at a time, requiring bench scientists months of work purifying transcription factors and performing DNA footprinting studies. Massive scale options like ChIP-Seq and microarrays are a step up, but still require considerable resources in terms of manpower and materials. While computational biologists have developed methods to predict protein function from sequence, gene locations from sequence, and even metabolic networks from sequence, the space of regulatory network reconstruction from sequence remains virtually untouched. Part of the reason comes from the fact that the components of a regulatory interaction, such as transcription factors and binding sites, are difficult to detect. The other, more prominent reason, is that there exists no "recognition code" to determine which transcription factors will bind which sites. I've created a pipeline to reconstruct regulatory networks starting from an unannotated complete genomic sequence for a prokaryotic organism. The pipeline predicts necessary information, such as gene locations and transcription factor sequences, using custom tools and third party software. The core step is to determine the likelihood of interaction between a TF and a binding site using a black box style recognition code developed by applying machine learning methods to databases of prokaryotic regulatory interactions. I show how one can use this pipeline to reconstruct the virtually unknown regulatory network of Bacillus anthracis.
2031-01-01
Li, Song. « Integrate qualitative biological knowledge for gene regulatory network reconstruction with dynamic Bayesian networks ». [Ames, Iowa : Iowa State University], 2007.
Trouver le texte intégralSteiger, Edgar [Verfasser]. « Efficient Sparse-Group Bayesian Feature Selection for Gene Network Reconstruction / Edgar Steiger ». Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1170876633/34.
Texte intégralKröger, Stefan. « Bioinformatic analyses for T helper cell subtypes discrimination and gene regulatory network reconstruction ». Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18122.
Texte intégralWithin the last two decades high-throughput gene expression screening technologies have led to a rapid accumulation of experimental data. The amounts of information available have enabled researchers to contrast and combine multiple experiments by synthesis, one of such approaches is called meta-analysis. In this thesis, we build a large gene expression data set based on publicly available studies for further research on T cell subtype discrimination and the reconstruction of T cell specific gene regulatory events. T cells are immune cells which have the ability to differentiate into subtypes with distinct functions, initiating and contributing to a variety of immune processes. To date, an unsolved problem in understanding the immune system is how T cells obtain a specific subtype differentiation program, which relates to subtype-specific gene regulatory mechanisms. We present an assembled expression data set which describes a specific T cell subset, regulatory T (Treg) cells, which can be further categorized into natural Treg (nTreg) and induced Treg (iTreg) cells. In our analysis we have addressed specific challenges in regulatory T cell research: (i) discriminating between different Treg cell subtypes for characterization and functional analysis, and (ii) reconstructing T cell subtype specific gene regulatory mechanisms which determine the differences in subtype-specific roles for the immune system. Our meta-analysis strategy combines more than one hundred microarray experiments. This data set is applied to a machine learning based strategy of extracting surface protein markers to enable Treg cell subtype discrimination. We identified a set of 41 genes which distinguish between nTregs and iTregs based on gene expression profile only. Evaluation of six of these genes confirmed their discriminative power which indicates that our approach is suitable to extract candidates for robust discrimination between experiment classes. Next, we identify gene regulatory interactions using existing reconstruction algorithms aiming to extend the number of known gene-gene interactions for Treg cells. We applied eleven GRN reconstruction tools based on expression data only and compared their performance. Taken together, our results suggest that the available methods are not yet sufficient to extend the current knowledge by inferring so far unreported Treg specific interactions. Finally, we present an approach of integrating multiple data sets based on different high-throughput technologies to reconstruct a subtype-specific GRN. We constructed a Th2 cell specific gene regulatory network of 100 genes. While 89 of these are known to be related to Th2 cell differentiation, we were able to attribute 11 new candidate genes with a function in Th2 cell differentiation. We show that our approach to data integration does, in principle, allow for the reconstruction of a complex network. Future availability of more and more consistent data may enable the use of the concept of GRN reconstruction to improve understanding causes and mechanisms of cellular differentiation in the immune system and beyond and, ultimately, their dysfunctions and diseases.
Chen, Wei, et 陈玮. « A factor analysis approach to transcription regulatory network reconstruction using gene expression data ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617783.
Texte intégralpublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Henderson, David Allen. « Reconstruction of metabolic pathways by the exploration of gene expression data with factor analysis ». Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/30089.
Texte intégralPh. D.
Kröger, Stefan [Verfasser], Ulf [Gutachter] Leser, Joachim [Gutachter] Selbig et Nils [Gutachter] Blüthgen. « Bioinformatic analyses for T helper cell subtypes discrimination and gene regulatory network reconstruction / Stefan Kröger ; Gutachter : Ulf Leser, Joachim Selbig, Nils Blüthgen ». Berlin : Humboldt-Universität zu Berlin, 2017. http://d-nb.info/118933108X/34.
Texte intégralAravena, Duarte Andrés Octavio. « Probabilistic and constraint based modelling to determine regulation events from heterogeneous biological data ». Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00988255.
Texte intégralMolnar, Istvan, David Lopez, Jennifer Wisecaver, Timothy Devarenne, Taylor Weiss, Matteo Pellegrini et Jeremiah Hackett. « Bio-crude transcriptomics : Gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa)* ». BioMed Central, 2012. http://hdl.handle.net/10150/610020.
Texte intégralLivres sur le sujet "Gene network reconstruction"
Thomas, Greg. Border Blurs. Liverpool University Press, 2019. http://dx.doi.org/10.3828/liverpool/9781789620269.001.0001.
Texte intégralMeglin, Joellen A. Ruth Page. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780190205164.001.0001.
Texte intégralChapitres de livres sur le sujet "Gene network reconstruction"
Allouche, David, Christine Cierco-Ayrolles, Simon de Givry, Gérald Guillermin, Brigitte Mangin, Thomas Schiex, Jimmy Vandel et Matthieu Vignes. « A Panel of Learning Methods for the Reconstruction of Gene Regulatory Networks in a Systems Genetics Context ». Dans Gene Network Inference, 9–31. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45161-4_2.
Texte intégralSehgal, Muhammad Shoaib B., Iqbal Gondal, Laurence Dooley, Ross Coppel et Goh Kiah Mok. « Transcriptional Gene Regulatory Network Reconstruction Through Cross Platform Gene Network Fusion ». Dans Pattern Recognition in Bioinformatics, 274–85. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75286-8_27.
Texte intégralSehgal, Muhammad Shoaib, Iqbal Gondal et Laurence Dooley. « Computational Modelling Strategies for Gene Regulatory Network Reconstruction ». Dans Computational Intelligence in Medical Informatics, 207–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75767-2_10.
Texte intégralZheng, Ming, et Mugui Zhuo. « Gene Regulatory Network Reconstruction from Yeast Expression Time Series ». Dans Lecture Notes in Electrical Engineering, 1477–81. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3648-5_191.
Texte intégralKoumadorakis, Dimitrios E., Georgios N. Dimitrakopoulos, Marios G. Krokidis et Aristidis G. Vrahatis. « Gene Regulatory Network Reconstruction Using Single-Cell RNA-Sequencing ». Dans Handbook of Computational Neurodegeneration, 1–15. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-75479-6_18-1.
Texte intégralNoman, Nasimul, Leon Palafox et Hitoshi Iba. « Reconstruction of Gene Regulatory Networks from Gene Expression Data Using Decoupled Recurrent Neural Network Model ». Dans Proceedings in Information and Communications Technology, 93–103. Tokyo : Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54394-7_8.
Texte intégralChang, Chunqi, Zhi Ding et Yeung Sam Hung. « Nonnegative Network Component Analysis by Linear Programming for Gene Regulatory Network Reconstruction ». Dans Independent Component Analysis and Signal Separation, 395–402. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00599-2_50.
Texte intégralDai, Jisheng, Chunqi Chang, Zhongfu Ye et Yeung Sam Hung. « An Efficient Convex Nonnegative Network Component Analysis for Gene Regulatory Network Reconstruction ». Dans Pattern Recognition in Bioinformatics, 56–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04031-3_6.
Texte intégralNair, Ajay, Madhu Chetty et Pramod P. Wangikar. « Significance of Non-edge Priors in Gene Regulatory Network Reconstruction ». Dans Neural Information Processing, 446–53. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12637-1_56.
Texte intégralRemondini, Daniel, et Gastone Castellani. « Multiscale Network Reconstruction from Gene Expression Measurements : Correlations, Perturbations, and “A Priori Biological Knowledge” ». Dans Applied Statistics for Network Biology, 105–31. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527638079.ch6.
Texte intégralActes de conférences sur le sujet "Gene network reconstruction"
Mandal, Sudip, Goutam Saha et Rajat Kumar Pal. « Neural network based gene regulatory network reconstruction ». Dans 2015 3rd International Conference on Computer, Communication, Control and Information Technology (C3IT). IEEE, 2015. http://dx.doi.org/10.1109/c3it.2015.7060112.
Texte intégral« Neurotransmitter gene network reconstruction and analisis ». Dans Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-177.
Texte intégralBezerra, G. B., T. V. Barra, F. J. von Zuben et L. N. de Castro. « Handling Data Sparseness in Gene Network Reconstruction ». Dans 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. IEEE, 2005. http://dx.doi.org/10.1109/cibcb.2005.1594900.
Texte intégralSehgal, Muhammad Shoaib B., Iqbal Gondal, Laurence Dooley et Ross Coppel. « Coalesce Gene Regulatory Network Reconstruction : A Cross-Platform Transcriptional Gene Network Fusion Framework ». Dans TENCON 2006 - 2006 IEEE Region 10 Conference. IEEE, 2006. http://dx.doi.org/10.1109/tencon.2006.343719.
Texte intégralQu, Luxuan, Zhiqiong Wang, Yueyang Huo, Yuezhou Zhou, Junchang Xin et Wei Qian. « Distributed Local Bayesian Network for Gene Regulatory Network Reconstruction ». Dans 2020 6th International Conference on Big Data Computing and Communications (BIGCOM). IEEE, 2020. http://dx.doi.org/10.1109/bigcom51056.2020.00026.
Texte intégralYang, Bo, Junying Zhang, Junliang Shang et Aimin Li. « A Bayesian network based algorithm for gene regulatory network reconstruction ». Dans 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2011. http://dx.doi.org/10.1109/icspcc.2011.6061811.
Texte intégralSEMAN, ALI, MOHAMED SAIFULAMAN, SHARIFALLILAH NORDIN et WINDDY PINDAH. « Reconstruction of Gene Regulatory Network from Gene Perturbation Data Current Methods and Problems ». Dans Fifth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-087-3-51.
Texte intégralKovalev, Sergey S., Arthur I. Dergilev, Yuriy L. Orlov, Oleg D. Fateev et Urana N. Kavai-ool. « Reconstruction of Dementia Gene Network Using Online Bioinformatics Tools ». Dans 2020 Cognitive Sciences, Genomics and Bioinformatics (CSGB). IEEE, 2020. http://dx.doi.org/10.1109/csgb51356.2020.9214618.
Texte intégral« Gene network of type 2 diabetes : reconstruction and analysis ». Dans Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-125.
Texte intégralQuarton, Tyler, Taek Kang, Eduardo D. Sontag et Leonidas Bleris. « Exploring the impact of resource limitations on gene network reconstruction ». Dans 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798773.
Texte intégral