Littérature scientifique sur le sujet « Gaussian approximation potentials »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gaussian approximation potentials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Gaussian approximation potentials"

1

Bartók, Albert P., and Gábor Csányi. "Gaussian approximation potentials: A brief tutorial introduction." International Journal of Quantum Chemistry 115, no. 16 (2015): 1051–57. http://dx.doi.org/10.1002/qua.24927.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Klawohn, Sascha, James R. Kermode, and Albert P. Bartók. "Massively parallel fitting of Gaussian approximation potentials." Machine Learning: Science and Technology 4, no. 1 (2023): 015020. http://dx.doi.org/10.1088/2632-2153/aca743.

Texte intégral
Résumé :
Abstract We present a data-parallel software package for fitting Gaussian approximation potentials (GAPs) on multiple nodes using the ScaLAPACK library with MPI and OpenMP. Until now the maximum training set size for GAP models has been limited by the available memory on a single compute node. In our new implementation, descriptor evaluation is carried out in parallel with no communication requirement. The subsequent linear solve required to determine the model coefficients is parallelised with ScaLAPACK. Our approach scales to thousands of cores, lifting the memory limitation and also delivering substantial speedups. This development expands the applicability of the GAP approach to more complex systems as well as opening up opportunities for efficiently embedding GAP model fitting within higher-level workflows such as committee models or hyperparameter optimisation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bartók, Albert P., and Gábor Csányi. "Erratum: Gaussian approximation potentials: A brief tutorial introduction." International Journal of Quantum Chemistry 116, no. 13 (2016): 1049. http://dx.doi.org/10.1002/qua.25140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hiroshima, Fumio. "A Scaling Limit of a Hamiltonian of Many Nonrelativistic Particles Interacting with a Quantized Radiation Field." Reviews in Mathematical Physics 09, no. 02 (1997): 201–25. http://dx.doi.org/10.1142/s0129055x97000075.

Texte intégral
Résumé :
This paper presents a scaling limit of Hamiltonians which describe interactions of N-nonrelativistic charged particles in a scalar potential and a quantized radiation field in the Coulomb gauge with the dipole approximation. The scaling limit defines effective potentials. In one-nonrelativistic particle case, the effective potentials have been known to be Gaussian transformations of the scalar potential [J. Math. Phys.34 (1993) 4478–4518]. However it is shown that the effective potentials in the case of N-nonrelativistic particles are not necessary to be Gaussian transformations of the scalar potential.
Styles APA, Harvard, Vancouver, ISO, etc.
5

John, S. T., and Gábor Csányi. "Many-Body Coarse-Grained Interactions Using Gaussian Approximation Potentials." Journal of Physical Chemistry B 121, no. 48 (2017): 10934–49. http://dx.doi.org/10.1021/acs.jpcb.7b09636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

FUKUKAWA, K., Y. FUJIWARA, and Y. SUZUKI. "GAUSSIAN NONLOCAL POTENTIALS FOR THE QUARK-MODEL BARYON–BARYON INTERACTIONS." Modern Physics Letters A 24, no. 11n13 (2009): 1035–38. http://dx.doi.org/10.1142/s021773230900053x.

Texte intégral
Résumé :
Gaussian nonlocal potentials for the quark-model baryon–baryon interactions are derived by using the Gauss-Legendre quadrature for the special functions. The reliability of the approximation is examined with respect to the phase shifts and the deuteron binding energy. The potential is accurate enough if one uses seven-point Gauss-Legendre quadrature.
Styles APA, Harvard, Vancouver, ISO, etc.
7

SÉNÉCHAL, DAVID. "CHAOS IN THE HERMITIAN ONE-MATRIX MODEL." International Journal of Modern Physics A 07, no. 07 (1992): 1491–506. http://dx.doi.org/10.1142/s0217751x9200065x.

Texte intégral
Résumé :
The recursion coefficients Ri, which appear in the orthogonal polynomial method of solution for the Hermitian one-matrix model, are determined numerically for values of N up to a thousand. For some cases a chaotic behavior appears in some range, preventing a smooth flow from odd to even multicrititical models. This behavior is studied both for single-well and multiwell potentials. For multiwell potentials, the coefficients Ri generically tend toward more than one function in the N→∞ limit, and this structure is analyzed for small i using the Gaussian approximation.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Demiroğlu, İlker, Yenal Karaaslan, Tuğbey Kocabaş, Murat Keçeli, Álvaro Vázquez-Mayagoitia, and Cem Sevik. "Computation of the Thermal Expansion Coefficient of Graphene with Gaussian Approximation Potentials." Journal of Physical Chemistry C 125, no. 26 (2021): 14409–15. http://dx.doi.org/10.1021/acs.jpcc.1c01888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Exl, Lukas, Norbert J. Mauser, and Yong Zhang. "Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation." Journal of Computational Physics 327 (December 2016): 629–42. http://dx.doi.org/10.1016/j.jcp.2016.09.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

OLSEN, R. A., та F. RAVNDAL. "EFFECTIVE POTENTIALS FOR ϕ4-THEORY IN 2+1 DIMENSIONS". Modern Physics Letters A 09, № 28 (1994): 2623–35. http://dx.doi.org/10.1142/s021773239400246x.

Texte intégral
Résumé :
Spontaneous symmetry breaking in ϕ4-theory in 2+1 dimensions is investigated using the Gaussian approximation. The theory stays in the symmetric phase at zero temperature as long as the bare coupling constant is below a critical value λc. When λ>λc the symmetric phase is again stable when the temperature is above a transition temperature T(λ). The obtained results are compared with the predictions of the standard one-loop effective potential.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie