Littérature scientifique sur le sujet « Gases in »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gases in ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Gases in"

1

Wagner, Robert B. « Blood gases, blood gases ». Annals of Thoracic Surgery 57, no 1 (janvier 1994) : 264. http://dx.doi.org/10.1016/0003-4975(94)90431-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

R. Shirullah et H. Muhammad. « COMPAIRING OF PERFECT GASES AND REAL GASES ». Bulletin of Toraighyrov University. Chemistry & ; Biology series, no 2.2023 (29 juin 2023) : 38–46. http://dx.doi.org/10.48081/lyeu8307.

Texte intégral
Résumé :
In brief, we may state that Ideal gases have molecular interactions, with the mass of the molecules receiving more attention. However, the factors are altered by an unusually low temperature and high pressure. The Bayel Maryot rule states that for Ideal gases, the effect of pressure on the bulk at constant temperature has a constant magnitude, hence in this instance, PV is equal to CONST (PV = constant). The attractive force between molecules and the majority of molecules in actual gases (gases seen in nature) should be investigated under high pressure and low temperature (relatively). Actual gases in environments similar to Ideal gases must be very dependent on the rule for Ideal gases. And it should be distinct from the circumstances of ethylene gas. This indicates that gases differ from the principles of Normal gases to the extent that their gravity increases as a result of high pressure and a lower temperature. The distance between molecules decreases when pressure is high enough and temperature is low enough. However, the strength of molecular interactions has greatly increased, which has the effect of changing a substance from a gas to a liquid. As this method was once used to turn gases into liquids. Compressor is the term used to describe the process by which gases are changed into liquids. The compression factor of all perfect gases is z=1, and under any pressure, it neither drops nor increases from 1. This is another contrast between the behavior of perfect gases and real gases. However, this behavior differs in real gases because they can have compression factors that are diametrically opposed to 1, or (z≠1). Keywords: Ideal gas, Real gas, Carbon dioxide, compression factor, compressor.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhou, Chi-Chun, et Wu-Sheng Dai. « Canonical partition functions : ideal quantum gases, interacting classical gases, and interacting quantum gases ». Journal of Statistical Mechanics : Theory and Experiment 2018, no 2 (12 février 2018) : 023105. http://dx.doi.org/10.1088/1742-5468/aaa37e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

SATOH, Toyoyuki. « Shielding Gases ». JOURNAL OF THE JAPAN WELDING SOCIETY 76, no 1 (2007) : 65–67. http://dx.doi.org/10.2207/jjws.76.65.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

SATO, Toyoyuki. « Shielding Gases ». JOURNAL OF THE JAPAN WELDING SOCIETY 77, no 2 (2008) : 146–50. http://dx.doi.org/10.2207/jjws.77.146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pregun, István, et Zsolt Tulassay. « Bowel gases ». Orvosi Hetilap 149, no 18 (1 mai 2008) : 819–23. http://dx.doi.org/10.1556/oh.2008.28352.

Texte intégral
Résumé :
A haspuffadás az emésztőrendszeri betegségek gyakori tünete. A betegek többségének meggyőződése, hogy panaszukat a bélgázok fokozott termelődése okozza. Az elmúlt években végzett klinikai vizsgálatok, különösen a gázterheléses vizsgálatok eredményeként mind többet tudunk a bélgázok szabályozásáról, a tünetképzésben betöltött szerepükről. Bár egyes kórképek egyértelműen a gázok szabályozásának zavaraival függnek össze, funkcionális bélbetegségekben, mindenekelőtt az irritábilis bél szindrómában a kérdés sokkal összetettebb. A gázok szabályozásának zavara, kóros reflexek és a visceralis hiperszenzitivitás azok a fő tényezők, amelyek a puffadás érzetéhez vezetnek ebben a betegcsoportban. A bélgázok kórélettani folyamatainak tisztázását célzó további vizsgálatok várhatóan megteremthetik az optimális kezelés alapjait is.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Malein, William, et Christina Beecroft. « Medical gases ». Anaesthesia & ; Intensive Care Medicine 22, no 12 (décembre 2021) : 769–73. http://dx.doi.org/10.1016/j.mpaic.2021.10.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jenkinson, Stephen G., et Jay I. Peters. « Respiratory Gases ». Clinics in Chest Medicine 7, no 3 (septembre 1986) : 495–504. http://dx.doi.org/10.1016/s0272-5231(21)01118-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schrobilgen, Gary J., et David S. Brock. « Noble gases ». Annual Reports Section "A" (Inorganic Chemistry) 108 (2012) : 138. http://dx.doi.org/10.1039/c2ic90029g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Meulenbelt, Jan. « Irritant gases ». Medicine 44, no 3 (mars 2016) : 175–78. http://dx.doi.org/10.1016/j.mpmed.2015.12.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Gases in"

1

Ozturk, Bahtiyar. « Removal of acidic gases from flue gases using membrane contactors ». Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265396.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

McGinley, Susan. « Measuring Soil Gases ». College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1993. http://hdl.handle.net/10150/622349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Whitehead, Thomas Michael. « Interacting Fermi gases ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274548.

Texte intégral
Résumé :
Interacting Fermi gases are one of the chief paradigms of condensed matter physics. They have been studied since the beginning of the development of quantum mechanics, but continue to produce surprises today. Recent experimental developments in the field of ultracold atomic gases, as well as conventional solid state materials, have produced new and exotic forms of Fermi gases, the theoretical understanding of which is still in its infancy. This Thesis aims to provide updated tools and additional insights into some of these systems, through the application of both numerical and analytical techniques. The first Part of this Thesis is concerned with the development of improved numerical tools for the study of interacting Fermi gases. These tools take the form of accurate model potentials for the dipolar and contact interactions, as found in various ultracold atomic gas experiments, and a new form of Jastrow correlation factor that interpolates between the radial symmetry of the inter-electron Coulomb potential at short inter-particle distances, and the symmetry of the numerical simulation cell at large separation. These methods are designed primarily for use in quantum Monte Carlo numerical calculations, and provide high accuracy along with considerable acceleration of simulations. The second Part shifts focus to an analytical analysis of spin-imbalanced Fermi gases with an attractive contact interaction. The spin-imbalanced Fermi gas is shown to be unstable to the formation of multi-particle instabilities, generalisations of a Cooper pair containing more than two fermions, and then a theory of superconductivity is built from these instabilities. This multi-particle superconductivity is shown to be energetically favourable over conventional superconducting phases in spin-imbalanced Fermi gases, and its unusual experimental consequences are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cunje, Alwin. « Noble gases and catalysis ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0012/NQ59125.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sadeghzadeh, Kayvan. « Spin polarised Fermi gases ». Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610744.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Giovanelli, Debora. « Electrochemical detection of gases ». Thesis, University of Oxford, 2004. http://ora.ox.ac.uk/objects/uuid:fd447153-b6dd-4be1-aae5-4ece5dc36856.

Texte intégral
Résumé :
This thesis discusses diverse electrochemical strategies for the determination of the concentration of the gases hydrogen sulfide, ammonia and halothane. The chemical tagging of sulfide by a variety of structurally diverse substituted benzoquinone species was studied over a wide range of pH (22S in the range 20-200 μM. More sensitive (LoD= 1 (μM) amperometric detection of sulfide was obtained at modified nickel electrodes in acidic media in which sulfide was stripped from the nickel oxide layer. This approach was exploited further by using nickel modified screen printed carbon (Ni-SPC) electrodes as economical and disposable sensors for sulfide. Next, two different strategies for determining gaseous ammonia in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluromethylsulfonyl)imide, [EMIM][N(Tf)2], and in DMF are described. The first approach exploits the effect of ammonia as a proton acceptor species on the anodic oxidation of hydroquinone, resulting in a linear detection range from 10 to 95 ppm ammonia (LoD= 4.2 ppm). The second approach is based on the direct oxidation of ammonia in either DMF or [EMIM][N(Tf)2]. The possibility of photochemically induced electrocatalytic processes within microdroplets containing p-chloranil (2,3,5,6-tetrachloro-1,4-benzoquinone, TCBQ) was examined as a means of detecting the anaesthetic gas halothane.

Finally, two of the more promising routes for sulfide detection were studied at elevated temperatures (up to 70 °C) with a view to developing H2S sensors capable of meeting the demands of oilfield applications.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Madeira, Lucas 1991. « Many-body systems : heavy rare-gases adsorbed on graphene substrates and ultracold Fermi gases = Sistemas de muitos corpos : gases nobres pesados adsorvidos em substratos de grafeno e gases de Fermi ultrafrios ». [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276942.

Texte intégral
Résumé :
Orientador: Silvio Antonio Sachetto Vitiello
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-28T00:18:16Z (GMT). No. of bitstreams: 1 Madeira_Lucas_M.pdf: 4273856 bytes, checksum: 8543c0dd916e2ec3fc638a5d31b32787 (MD5) Previous issue date: 2015
Resumo: Nessa dissertação nós investigamos dois sistemas de muitos corpos. Na primeira parte nós escolhemos uma abordagem clássica para estudar a adsorção de gases nobres pesados, Ne, Ar, Kr, Xe e Rn, em substratos de grafeno. Nós apresentamos evidências de camadas adsorvidas comensuradas, as quais dependem fortemente da simetria do substrato, para duas estruturas: camadas de Ne na rede sqrt{7} X sqrt{7} e Kr na rede sqrt{3} X sqrt{3}. Para estudar o derretimento nós introduzimos um parâmetro de ordem e sua susceptibilidade. O calor específico e a susceptibilidade em função da temperatura foram calculados para os gases nobres pesados em diversas densidades. A posição e largura característica dos picos do calor específico e da susceptibilidade foram determinadas. Finalmente, nós investigamos a distância dos primeiros vizinhos e a distância entre a camada e o substrato, identificando contribuições relacionadas aos picos do calor específico e da susceptibilidade. A segunda parte da dissertação trata de uma linha de vórtice no gás unitário de Fermi. Gases fermiônicos ultrafrios são notáveis devido à possibilidade experimental de variar as interações interpartículas através de ressonâncias de Feshbach, o que possibilita a observação do crossover BCS-BEC. No meio do crossover encontra-se um estado fortemente interagente, o gás unitário de Fermi. Uma linha de vórtice corresponde a uma excitação desse sistema com unidades de circulação quantizadas. Nós construímos funções de onda, inspiradas na função BCS, para descrever o estado fundamental e também o sistema com uma linha de vórtice. Nossos resultados para o estado fundamental elucidam aspectos da geometria cilíndrica do problema. O perfil de densidade é constante no centro do cilindro e vai a zero suavemente na borda. Nós separamos a contribuição devido à parede da energia do estado fundamental e determinamos a energia por partícula do bulk, epsilon_0=(0.42 +- 0.01) E_{FG}. Nós também calculamos o gap superfluído para essa geometria, Delta=(0.76 +- 0.01) E_{FG}. Para o sistema com a linha de vórtice nós obtivemos o perfil de densidade, o qual corresponde a uma densidade não nula no centro do vórtice, e a energia de excitação por partícula, epsilon_{ex}=(0.0058 +- 0.0003) E_{FG}. Os métodos empregados nessa dissertação, Dinâmica Molecular, Monte Carlo Variacional e Monte Carlo de Difusão, nos dão uma base sólida para a investigação de sistemas relacionados, e outros sistemas, de muitos corpos no futuro
Abstract: In this dissertation we investigated two many-body systems. For the first part we chose a classical approach to study the adsorption of heavy rare-gases, Ne, Ar, Kr, Xe and Rn, on graphene substrates. We presented evidences of commensurate adlayers, which depend strongly on the symmetry of the substrate, for two structures: Ne adlayers in the sqrt{7} X sqrt{7} superlattice and Kr in the sqrt{3} X sqrt{3} lattice. In order to study the melting of the system we introduced an order parameter, and its susceptibility. The specific heat and susceptibility as a function of the temperature were calculated for the heavy noble gases at various densities. The position and characteristic width of the specific heat and susceptibility peaks of these systems were determined. Finally, we investigated the first neighbor distance and the distance between the adlayer and the substrate, identifying contributions related to specific heat and melting peaks. The second part of the dissertation deals with a vortex line in the unitary Fermi gas. Ultracold Fermi gases are remarkable due to the experimental possibility to tune interparticle interactions through Feshbach resonances, which allows the observation of the BCS-BEC crossover. Right in the middle of the crossover lies a strongly interacting state, the unitary Fermi gas. A vortex line corresponds to an excitation of this system with quantized units of circulation. We developed wavefunctions, inspired by the BCS wavefunction, to describe the ground state and also for a system with a vortex line. Our results for the ground state elucidate aspects of the cylindrical geometry of the problem. The density profile is flat in the center of the cylinder and vanishes smoothly at the wall. We were able to separate from the ground state of the system the wall contribution and we have determined the bulk energy as epsilon_0=(0.42 +- 0.01) E_{FG} per particle. We also calculated the superfluid pairing gap for this geometry, Delta=(0.76 +- 0.01) E_{FG}. For the system with a vortex line we obtained the density profile, which corresponds to a non-zero density at the core, and the excitation energy, epsilon_{ex}=(0.0058 +- 0.0003) E_{FG} per particle. The methods employed in this dissertation, Molecular Dynamics, Variational Monte Carlo and Diffusion Monte Carlo, give us a solid basis for the investigation of related and other many-body systems in the future
Mestrado
Física
Mestre em Física
2012/24195-2
FAPESP
Styles APA, Harvard, Vancouver, ISO, etc.
8

Teague, Kenneth Grayson. « Predictive dynamic model of a small nonisothermal pressure swing air separation process / ». Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kreslavskiy, Dmitry Michael. « Lorentz Lattice Gases on Graphs ». Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/6423.

Texte intégral
Résumé :
The present work consists of three parts. In the first part (chapters III and IV), the dynamics of Lorentz lattice gases (LLG) on graphs is analyzed. We study the fixed scatterer model on finite graphs. A tight bound is established on the size of the orbit for arbitrary graphs, and the model is shown to perform a depth-first search on trees. Rigidity models on trees are also considered, and the size of the resulting orbit is established. In the second part (chapter V), we give a complete description of dynamics for LLG on the one-dimensional integer lattice, with a particular interest in showing that these models are not capable of universal computation. Some statistical properties of these models are also analyzed. In the third part (chapter VI) we attempt to partition a pool of workers into teams that will function as independent TSS lines. Such partitioning may be aimed to make sure that all groups work at approximately the same rate. Alternatively, we may seek to maximize the rate of convergence of the corresponding dynamical systems to their fixed points with optimal production at the fastest rate. The first problem is shown to be NP-hard. For the second problem, a solution for splitting into pairs is given, and it is also shown that this solution is not valid for partitioning into teams composed of more than two workers.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Asatani, Haruki. « Solubility of gases in liquids ». Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/4643.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Gases in"

1

Gases. Minneapolis : Lerner Publications Co., 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

National Institute of Standards and Technology (U.S.), dir. Gases. Gaithersburg, MD : U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gases. Gaithersburg, MD : U.S. Department of Commerce, National Institute of Standards and Technology, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gases. Gaithersburg, MD : U.S. Department of Commerce, National Institute of Standards and Technology, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gases. Minneapolis : Lerner Publications Company, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ian, Graham. Gases. North Mankato, MN : Chrysalis Education, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gases. New York, NY : AV2 by Weigl, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gases. Ann Arbor, Mich : Cherry Lake Pub., 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

National Institute of Standards and Technology (U.S.), dir. Gases. Gaithersburg, MD : U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lechner, M. D., dir. Gases in Gases, Liquids and their Mixtures. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49718-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Gases in"

1

McCain, G. R. « Gases ». Dans Food Additive User’s Handbook, 257–72. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3916-2_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Smith, Jim, et Lily Hong-Shum. « Gases ». Dans Food Additives Data Book, 581–96. Oxford, UK : Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444397741.ch8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Watson, Keith L. « Gases ». Dans Foundation Science for Engineers, 167–76. London : Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12450-3_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Marker, Brian R. « Gases ». Dans Selective Neck Dissection for Oral Cancer, 1–2. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_132-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Look, Dwight C., et Harry J. Sauer. « Gases ». Dans Engineering Thermodynamics, 62–100. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9316-3_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kobayashi, Naoki, et Shinji Yamamori. « Gases ». Dans Seamless Healthcare Monitoring, 311–34. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69362-0_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Casey, M., J. Leonard, B. Lygo et G. Procter. « Gases ». Dans Advanced Practical Organic Chemistry, 74–87. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6643-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

McCain, G. R. « Gases ». Dans Food Additive User’s Handbook, 257–72. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-5247-2_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cardarelli, François. « Gases ». Dans Materials Handbook, 1519–616. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-38925-7_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Abou-Donia, Mohamed B. « Gases ». Dans Mammalian Toxicology, 219–32. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118683484.ch10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Gases in"

1

Hernandez Castillo, Gianella. « Greenhouse Gases ». Dans MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition. Basel, Switzerland : MDPI, 2017. http://dx.doi.org/10.3390/mol2net-03-04592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

LIMA, A. R. P., et A. PELSTER. « SPINOR FERMI GASES ». Dans Proceedings of the 9th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812837271_0063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bagirov, Lev A., Salavat Z. Imaev et Vasily E. Borisov. « R&D Technologies for Acid Gases Extraction from Natural Gases ». Dans SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/176127-ms.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kodama, Takeshi. « Introduction to Relativistic Gases ». Dans NEW STATES OF MATTER IN HADRONIC INTERACTIONS:Pan American Advanced Study Institute. AIP, 2002. http://dx.doi.org/10.1063/1.1513675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ketterle, Wolfgang. « Superfluid ultracold fermi gases ». Dans 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431788.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

KANG, S., et J. KUNC. « Viscosity of dissociating gases ». Dans 27th Thermophysics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

MENOTTI, CHIARA, et MACIEJ LEWENSTEIN. « ULTRA-COLD DIPOLAR GASES ». Dans Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Blaszczak, Zdzislaw. « Optical orientation in gases ». Dans Laser Technology V, sous la direction de Wieslaw L. Wolinski et Michal Malinowski. SPIE, 1997. http://dx.doi.org/10.1117/12.280481.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ertmer, Wolfgang. « Ultracold Gases in Microgravity ». Dans Quantum-Atom Optics Downunder. Washington, D.C. : OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qmb1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zagirov, A. « SEPARATION OF PYROLYSIS GASES ». Dans Ecological and resource-saving technologies in science and technology. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2022. http://dx.doi.org/10.34220/erstst2021_78-81.

Texte intégral
Résumé :
A method for separating pyrolysis gases is considered, which is carried out by separating gases into distillate and non-condensable gases. The next stage is the combustion of non-condensable gas in the furnace of a shaft-type pyrolysis apparatus, where it forms flue gas, which, moving along the jacket, transfers part of its heat to the pyrolysis process. After passing through the pyrolysis apparatus, the flue gas enters the drying chamber and participates in the wood drying process. The waste flue gas is then discharged into the atmosphere after cleaning with a liquid.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Gases in"

1

Primeau, Edward J. Controlling Waste Anesthetic Gases. Fort Belvoir, VA : Defense Technical Information Center, décembre 1994. http://dx.doi.org/10.21236/ada292506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

White, J. A. Theory of condensable gases. Office of Scientific and Technical Information (OSTI), août 1989. http://dx.doi.org/10.2172/5641644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Leiding, Jeffery Allen. Theoretical Insight into Shocked Gases. Office of Scientific and Technical Information (OSTI), septembre 2016. http://dx.doi.org/10.2172/1329644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lin, Chun C. Collisional Processes Involving Atmospheric Gases. Fort Belvoir, VA : Defense Technical Information Center, juin 1997. http://dx.doi.org/10.21236/ada329610.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Thomas, John E. Fermi Gases in Bichromatic Superlattices. Office of Scientific and Technical Information (OSTI), novembre 2019. http://dx.doi.org/10.2172/1573239.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yavuz, Deniz D., Nick Proite, Tyler Green, Dan Sikes, Zach Simmons et Jared Miles. Refractive Index Enhancement in Gases. Fort Belvoir, VA : Defense Technical Information Center, février 2012. http://dx.doi.org/10.21236/ada564016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lin, Chun C. Collisional Processes Involving Atmospheric Gases. Fort Belvoir, VA : Defense Technical Information Center, septembre 1993. http://dx.doi.org/10.21236/ada270729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Aziz, R., et W. Taylor. Intermolecular potentials for hexafluoride gases. Office of Scientific and Technical Information (OSTI), octobre 1989. http://dx.doi.org/10.2172/5177696.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hansel, Joshua E., Matthias S. Kunick, Ray A. Berry et David Andrs. Non-Condensable Gases in RELAP-7. Office of Scientific and Technical Information (OSTI), août 2018. http://dx.doi.org/10.2172/1498114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shevenell, L., F. Goff, L. Gritzo et P. E. Jr Trujillo. Collection and analysis of geothermal gases. Office of Scientific and Technical Information (OSTI), juillet 1985. http://dx.doi.org/10.2172/5169166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie