Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Gas/particle.

Articles de revues sur le sujet « Gas/particle »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Gas/particle ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chubb, Donald L. « Gas Particle Radiator ». Journal of Thermophysics and Heat Transfer 1, no 3 (juillet 1987) : 285–88. http://dx.doi.org/10.2514/3.56213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Lixing, et Zhuoxiong Zeng. « Studies on gas turbulence and particle fluctuation in dense gas-particle flows ». Acta Mechanica Sinica 24, no 3 (8 mai 2008) : 251–60. http://dx.doi.org/10.1007/s10409-008-0156-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

ASBACH, C., T. KUHLBUSCH et H. FISSAN. « Investigation on the gas particle separation efficiency of the gas particle partitioner ». Atmospheric Environment 39, no 40 (décembre 2005) : 7825–35. http://dx.doi.org/10.1016/j.atmosenv.2005.08.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yang, Xiaojian, Chang Liu, Xing Ji, Wei Shyy null et Kun Xu. « Unified Gas-Kinetic Wave-Particle Methods VI : Disperse Dilute Gas-Particle Multiphase Flow ». Communications in Computational Physics 31, no 3 (juin 2022) : 669–706. http://dx.doi.org/10.4208/cicp.oa-2021-0153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sinclair, J. L., et R. Jackson. « Gas-particle flow in a vertical pipe with particle-particle interactions ». AIChE Journal 35, no 9 (septembre 1989) : 1473–86. http://dx.doi.org/10.1002/aic.690350908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Jie, et J. A. M. Kuipers. « Gas-particle interactions in dense gas-fluidized beds ». Chemical Engineering Science 58, no 3-6 (février 2003) : 711–18. http://dx.doi.org/10.1016/s0009-2509(02)00599-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Knoop, Claas, et Udo Fritsching. « Gas/particle Interaction in Ultrasound Agitated Gas Flow ». Procedia Engineering 42 (2012) : 770–81. http://dx.doi.org/10.1016/j.proeng.2012.07.469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Jie, et J. A. M. Kuipers. « Effect of competition between particle–particle and gas–particle interactions on flow patterns in dense gas-fluidized beds ». Chemical Engineering Science 62, no 13 (juillet 2007) : 3429–42. http://dx.doi.org/10.1016/j.ces.2007.01.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Veyssiere, Bernard. « Detonations in Gas-Particle Mixtures ». Journal of Propulsion and Power 22, no 6 (novembre 2006) : 1269–88. http://dx.doi.org/10.2514/1.18378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Buehler, M. G., L. D. Bell et M. H. Hecht. « Alpha‐particle gas‐pressure sensor ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 14, no 3 (mai 1996) : 1281–87. http://dx.doi.org/10.1116/1.579942.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ullah, S. M. Rahmat, Masaki Takeuchi et Purnendu K. Dasgupta. « Versatile Gas/Particle Ion Chromatograph ». Environmental Science & ; Technology 40, no 3 (février 2006) : 962–68. http://dx.doi.org/10.1021/es051722z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Sabdenov, K. O. « Bubbling of gas-particle mixtures ». Fluid Dynamics 33, no 4 (juillet 1998) : 559–66. http://dx.doi.org/10.1007/bf02698221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hanley, H. J. M. « Particle dispersion in a gas ». International Journal of Thermophysics 18, no 4 (juillet 1997) : 947–55. http://dx.doi.org/10.1007/bf02575240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Connolly, Christine. « Gas sensing and particle detection ». Sensor Review 28, no 4 (12 septembre 2008) : 294–98. http://dx.doi.org/10.1108/02602280810902587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Feng, Y. Q., B. H. Xu, S. J. Zhang, A. B. Yu et P. Zulli. « Discrete particle simulation of gas fluidization of particle mixtures ». AIChE Journal 50, no 8 (2004) : 1713–28. http://dx.doi.org/10.1002/aic.10169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yang, Xiaojian, Wei Shyy et Kun Xu. « Unified gas-kinetic wave–particle method for gas–particle two-phase flow from dilute to dense solid particle limit ». Physics of Fluids 34, no 2 (février 2022) : 023312. http://dx.doi.org/10.1063/5.0081105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gusev, V. N., et Yu V. Nikol'skii. « Modeling gas dynamic particle interaction in rarefied gas flows ». Fluid Dynamics 22, no 1 (1987) : 129–35. http://dx.doi.org/10.1007/bf01050863.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zeng, Zhuo Xiong, Zhang Jun Wang et Yun Ni Yu. « Effect of Particle Finite Size on Gas Turbulent Flow ». Advanced Materials Research 516-517 (mai 2012) : 752–57. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.752.

Texte intégral
Résumé :
Dynamic mesh and moving wall technique were employed to simulate the unsteady flow field of moving particle with finite size. For freely moving particle, it does not come into being particle wake. Middle particle can move straightforward outlet, but left and right particles move disorderly in a restricted region. Vortex location varies with the change of particle location. Turbulence energy and pressure is decreased gradually from inlet to outlet. But for moving particle with slip velocity between gas and particle, particle wake comes into being. Turbulence enhancement by particle wake effect is studied by numerical simulation of gas turbulent flows passing over particle under various particle sizes, inlet gas velocities, gas viscosity, gas density and the distance of particles.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Xu, Lijun, Chang Liu, Zhang Cao et Xiaomin Li. « Particle size influence on effective permittivity of particle–gas mixture with particle clusters ». Particuology 11, no 2 (avril 2013) : 216–24. http://dx.doi.org/10.1016/j.partic.2012.07.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ocone, R., S. Sundaresan et R. Jackson. « Gas-Particle flow in a duct of arbitrary inclination with particle-particle interactions ». AIChE Journal 39, no 8 (août 1993) : 1261–71. http://dx.doi.org/10.1002/aic.690390802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Sikovskii, D. F. « Relations for particle deposition in turbulent gas-particle channel flows ». Fluid Dynamics 45, no 1 (février 2010) : 74–84. http://dx.doi.org/10.1134/s0015462810010096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sommerfeld, M. « Modelling of particle-wall collisions in confined gas-particle flows ». International Journal of Multiphase Flow 18, no 6 (novembre 1992) : 905–26. http://dx.doi.org/10.1016/0301-9322(92)90067-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Oesterle, B., et A. Petitjean. « Simulation of particle-to-particle interactions in gas solid flows ». International Journal of Multiphase Flow 19, no 1 (février 1993) : 199–211. http://dx.doi.org/10.1016/0301-9322(93)90033-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Pratsinis, Sotiris E. « Particle production by gas-to-particle conversion in turbulent flows ». Journal of Aerosol Science 20, no 8 (janvier 1989) : 1461–64. http://dx.doi.org/10.1016/0021-8502(89)90862-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Schmitt, R. G., et P. B. Butler. « Influence of particle melting on a shocked particle-laden gas ». Powder Technology 70, no 2 (mai 1992) : 163–73. http://dx.doi.org/10.1016/0032-5910(92)85043-u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhuo, C. F., W. J. Yao, X. S. Wu, F. Feng et P. Xu. « Research on the Muzzle Blast Flow with Gas-Particle Mixtures Based on Eulerian-Eulerian Approach ». Journal of Mechanics 32, no 2 (16 juillet 2015) : 185–95. http://dx.doi.org/10.1017/jmech.2015.44.

Texte intégral
Résumé :
ABSTRACTThe issue on the muzzle blast flow with gas-particle mixtures was numerically investigated in this paper. The propellant gas in the cannon was assumed to be gas-particle mixtures consisting of a variety of gaseous species and particles. The model made use of the Eulerian-Eulerican approach, where the particle were modeled as a second fluid with parameters like bulk density, velocity and temperature, interacting with the gas flow. A high-resolution upwind scheme(AUSMPW+) and detailed reaction kinetics model were employed to solve the chemical non-equilibrium Euler equations for gas phase. The Euler equations for particle phase were solved by MacCormack scheme. The particle diameter and the mass fraction of particle were tested to show their effects on the development process of muzzle blast flow with gas-particle mixtures. The distribution of the main flow parameters of both gas and particle were obtained at different time intervals. The results show the evolution of the muzzle blast flow with gas-particle mixtures and demonstrate the effects of key parameter on the flow field of the gas-particle flow. This paper is a significant investigation for understanding the muzzle blast flow with gas-particle mixtures, which can provide valuable reference for the research on the muzzle blast flow.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Mohanarangam, K., et J. Y. Tu. « Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows : Part II Particle Response ». Journal of Computational Multiphase Flows 1, no 3 (septembre 2009) : 245–62. http://dx.doi.org/10.1260/1757-482x.1.3.245.

Texte intégral
Résumé :
In this paper the numerical model, which was presented in the first paper (Mohanarangam & Tu; 2009) of this series of study, is employed to study the different particle responses under the influence of two carrier phases namely the gas and the liquid. The numerical model takes into consideration the turbulent behaviour of both the carrier and the dispersed phases, with additional equations to take into account the combined fluid particle behaviour, thereby effecting a two-way coupling. The first paper in this series showed the distinct difference in particulate response both at the mean as well as at the turbulent level for two varied carrier phases. In this paper further investigation has been carried out over a broad range of particle Stokes number to further understand their behaviour in turbulent environments. In order to carry out this prognostic study, the backward facing step geometry of Fessler and Eaton (1999) has been adopted, while the inlet conditions for the carrier as well as the particle phases correspond to that of the experiments of Founti and Klipfel (1998). It is observed that at the mean velocity level the particulate velocities increased with a subsequent increase in the Stokes number for both the GP (Gas-Particle) as well as the LP (Liquid-Particle) flow. It was also observed that across the Stokes number there was a steady increase in the particulate turbulence for the GP flows with successive increase in Stokes number. However, for the LP flows, the magnitude of the increase in the particulate turbulence across the increasing of Stokes number is not as characteristic as the GP flow. Across the same sections for LP flows the majority of the trend shows a decrease after which they remain more or less a constant.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ishii, R., Y. Umeda et K. Kawasaki. « Nozzle flows of gas–particle mixtures ». Physics of Fluids 30, no 3 (1987) : 752. http://dx.doi.org/10.1063/1.866325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Malyshev, Oleg B. « Gas dynamics modelling for particle accelerators ». Vacuum 86, no 11 (mai 2012) : 1669–81. http://dx.doi.org/10.1016/j.vacuum.2012.03.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Campbell, Charles S., et David G. Wang. « Particle pressures in gas-fluidized beds ». Journal of Fluid Mechanics 227 (juin 1991) : 495–508. http://dx.doi.org/10.1017/s0022112091000216.

Texte intégral
Résumé :
The particle pressure is the surface force that is exerted due to the motion of particles and their interactions. This paper describes measurements of the particle pressure exerted on the sidewall of a gas-fluidized bed. As long as the bed remains in a packed state, the particle pressure decreases with increasing gas velocity as progressively more of the bed is supported by fluid forces. It appropriately reaches a minimum fluidization and then begins to rise again when the bed is fluidized, reflecting the agitation of the bed by bubbles. In this fully fluidized region, the particle pressure scales with the particle density and the bubble size.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Cohen, Douglas L. « Hot Particle Drag in Compressible Gas ». Aerosol Science and Technology 13, no 2 (janvier 1990) : 213–19. http://dx.doi.org/10.1080/02786829008959439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ishii, R., et Y. Umeda. « Freejet flows of gas-particle mixtures ». Journal of Thermophysics and Heat Transfer 2, no 1 (janvier 1988) : 17–24. http://dx.doi.org/10.2514/3.56.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wagner, Ayten Yilmaz, Hans Livbjerg, Per Gravers Kristensen et Peter Glarborg. « Particle Emissions from Domestic Gas Cookers ». Combustion Science and Technology 182, no 10 (22 septembre 2010) : 1511–27. http://dx.doi.org/10.1080/00102202.2010.486015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Rhodes, Martin, Shihui Zhou et Hadj Benkreira. « Flow of dilute gas-particle suspensions ». AIChE Journal 38, no 12 (décembre 1992) : 1913–15. http://dx.doi.org/10.1002/aic.690381207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lesniewski, T. K., et S. K. Friedlander. « Particle nucleation in turbulent gas jets ». AIChE Journal 43, S11 (1997) : 2698–703. http://dx.doi.org/10.1002/aic.690431314.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ogi, Takashi. « 2.1 Particle Generation in Gas Phase ». Journal of the Society of Powder Technology, Japan 59, no 10 (10 octobre 2022) : 519–20. http://dx.doi.org/10.4164/sptj.59.519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Yasuna, J. « Quantitative predictions of gas-particle flow in a vertical pipe with particle-particle interactions ». International Journal of Multiphase Flow 22 (décembre 1996) : 142. http://dx.doi.org/10.1016/s0301-9322(97)88532-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Yasuna, Jules A., Heather R. Moyer, Stacey Elliott et Jennifer L. Sinclair. « Quantitative predictions of gas-particle flow in a vertical pipe with particle-particle interactions ». Powder Technology 84, no 1 (juillet 1995) : 23–34. http://dx.doi.org/10.1016/0032-5910(94)02971-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Liu, Yang, Xue Liu, Guohui Li et Lixiang Jiang. « Numerical prediction effects of particle–particle collisions on gas–particle flows in swirl chamber ». Energy Conversion and Management 52, no 3 (mars 2011) : 1748–54. http://dx.doi.org/10.1016/j.enconman.2010.10.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Emelyanov, V. N., et K. N. Volkov. « Direct Numerical Simulation of Fully Developed Turbulent Gas–Particle Flow in a Duct ». Nelineinaya Dinamika 18, no 3 (2022) : 379–95. http://dx.doi.org/10.20537/nd220304.

Texte intégral
Résumé :
Direct numerical simulation of a fully developed turbulent flow of a viscous compressible fluid containing spherical solid particles in a channel is carried out. The formation of regions with an increased concentration of solid particles in a fully developed turbulent flow in a channel with solid walls is considered. The fluid flow is simulated with unsteady three-dimensional Navier – Stokes equations. The discrete trajectory approach is applied to simulate the motion of particles. The distributions of the mean and fluctuating characteristics of the fluid flow and distribution of the concentration of the dispersed phase in the channel are discussed. The formation of regions with an increased concentration of particles is associated with the instantaneous distribution of vorticity in the near-wall region of the channel. The results of numerical simulation are in qualitative and quantitative agreement with the available data of physical and computational experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Mizuno, Yusuke, Takuya Inoue, Shun Takahashi et Kota Fukuda. « Investigation of a gas–particle flow with particle–particle and particle–wall collisions by immersed boundary method ». International Journal of Computational Methods and Experimental Measurements 6, no 1 (31 octobre 2017) : 928–39. http://dx.doi.org/10.2495/cmem-v6-n1-132-138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

RAHMAN, KHURRAM, et CHARLES S. CAMPBELL. « Particle pressures generated around bubbles in gas-fluidized beds ». Journal of Fluid Mechanics 455 (25 mars 2002) : 103–27. http://dx.doi.org/10.1017/s002211200100725x.

Texte intégral
Résumé :
The particle pressure is the surface force in a particle/fluid mixture that is exerted solely by the particle phase. This paper presents measurements of the particle pressure on the faces of a two-dimensional gas-fluidized bed and gives insight into the mechanisms by which bubbles generate particle pressure. The particle pressure is measured by a specially designed ‘particle pressure transducer’. The results show that, around single bubbles, the most significant particle pressures are generated below and to the sides of the bubble and that these particle pressures steadily increase and reach a maximum value at bubble eruption. The dominant mechanism appears to be defluidization of material in the particle phase that results from the bubble attracting fluidizing gas away from the surrounding material; the surrounding material is no longer supported by the gas flow and can only be supported across interparticle contacts which results in the observed particle pressures. The contribution of particle motion to particle pressure generation is insignificant.The magnitude of the particle pressure below a single bubble in a gas-fluidized bed depends on the bubble size and the density of the solid particles, as might be expected as the amount of gas attracted by the bubble should increase with bubble size and because the weight of defluidized material depends on the density of the solid material. A simple scaling of these quantities is suggested that is otherwise independent of the bed material.In freely bubbling gas-fluidized beds the particle pressures generated behave differently. Overall they are smaller in magnitude and reach their maximum value soon after the bubble passes instead of at eruption. In this situation, it appears that the bubbles interact with one another in such a way that the de uidization effect below a leading bubble is largely counteracted by refluidizing gas exiting the roof of trailing bubbles.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bartley, Paul C., Aziz Amoozegar, William C. Fonteno et Brian E. Jackson. « Particle Densities of Horticultural Substrates ». HortScience 57, no 3 (mars 2022) : 379–83. http://dx.doi.org/10.21273/hortsci16319-21.

Texte intégral
Résumé :
The heterogeneity of horticultural substrates makes basic physical characteristics, such as total porosity and particle density, difficult to estimate. Due to the material source, inclusion of occluded pores, and hydrophobicity, particle density values reported from using liquid pyknometry, vary widely. Gas pycnometry was used to determine the particle density of coir, peat, perlite, pine bark, and wood substrates. Further precision was examined by gas species and separation by particle size. The calculated particle densities for each material determined by He, N2, and air were relatively constant and varied little despite the species of gas used. Particle size affected the measured particle density of perlite and pine bark but was minimal with coir, peat, and wood. Reducing the particle size removed more occluded pores and the measured particle density increased. Given the small variability, the use of particle density values obtained by gas pycnometry provides repeatable, precise measurements of substrate material total porosity.
Styles APA, Harvard, Vancouver, ISO, etc.
44

He, Yongxiang, et Haibo Zhao. « Conservative particle weighting scheme for particle collision in gas-solid flows ». International Journal of Multiphase Flow 83 (juillet 2016) : 12–26. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.03.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Bolio, E. « Dilute turbulent gas-solid flow in risers with particle-particle interactions ». International Journal of Multiphase Flow 22 (décembre 1996) : 94. http://dx.doi.org/10.1016/s0301-9322(97)88137-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Slater, Shane A., et John B. Young. « The calculation of inertial particle transport in dilute gas-particle flows ». International Journal of Multiphase Flow 27, no 1 (janvier 2001) : 61–87. http://dx.doi.org/10.1016/s0301-9322(99)00122-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

TSUJI, HIROFUMI, HISAO MAKINO, HIDETO YOSHIDA, FUMIMARU OGINO, TAKAJI INAMURO et ISSAKU FUJITA. « Particle Classification in Gas-Particle Flow by means of Backward Sampling. » KAGAKU KOGAKU RONBUNSHU 25, no 5 (1999) : 780–88. http://dx.doi.org/10.1252/kakoronbunshu.25.780.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Mizuno, Yusuke, Takayoshi Kubota, Shun Takahashi et Kota Fukuda. « Coupling Simulation of Gas-particle Flow around Multiple Particle-wall Collisions ». Proceedings of The Computational Mechanics Conference 2017.30 (2017) : 153. http://dx.doi.org/10.1299/jsmecmd.2017.30.153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bolio, Eduardo J., Jules A. Yasuna et Jennifer L. Sinclair. « Dilute turbulent gas-solid flow in risers with particle-particle interactions ». AIChE Journal 41, no 6 (juin 1995) : 1375–88. http://dx.doi.org/10.1002/aic.690410604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ishii, R., Y. Umeda et M. Yuhi. « Numerical analysis of gas-particle two-phase flows ». Journal of Fluid Mechanics 203 (juin 1989) : 475–515. http://dx.doi.org/10.1017/s0022112089001552.

Texte intégral
Résumé :
This paper is concerned with a numerical analysis of axisymmetric gas-particle two-phase flows. Underexpanded supersonic free-jet flows and supersonic flows around a truncated cylinder of gas-particle mixtures are solved numerically on the super computer Fujitsu VP-400. The gas phase is treated as a continuum medium, and the particle phase is treated partly as a discrete one. The particle cloud is divided into a large number of small clouds. In each cloud, the particles are approximated to have the same velocity and temperature. The particle flow field is obtained by following these individual clouds separately in the whole computational domain. In estimating the momentum and heat transfer rates from the particle phase to the gas phase, the contributions from these clouds are averaged over some volume whose characteristic length is small compared with the characteristic length of the flow field but large compared with that of the clouds. The results so obtained reveal that the flow characteristics of the gas-particle mixtures are widely different from those of the dust-free gas at many points.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie