Littérature scientifique sur le sujet « Gas/particle »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gas/particle ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Gas/particle"

1

Chubb, Donald L. « Gas Particle Radiator ». Journal of Thermophysics and Heat Transfer 1, no 3 (juillet 1987) : 285–88. http://dx.doi.org/10.2514/3.56213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhou, Lixing, et Zhuoxiong Zeng. « Studies on gas turbulence and particle fluctuation in dense gas-particle flows ». Acta Mechanica Sinica 24, no 3 (8 mai 2008) : 251–60. http://dx.doi.org/10.1007/s10409-008-0156-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

ASBACH, C., T. KUHLBUSCH et H. FISSAN. « Investigation on the gas particle separation efficiency of the gas particle partitioner ». Atmospheric Environment 39, no 40 (décembre 2005) : 7825–35. http://dx.doi.org/10.1016/j.atmosenv.2005.08.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yang, Xiaojian, Chang Liu, Xing Ji, Wei Shyy null et Kun Xu. « Unified Gas-Kinetic Wave-Particle Methods VI : Disperse Dilute Gas-Particle Multiphase Flow ». Communications in Computational Physics 31, no 3 (juin 2022) : 669–706. http://dx.doi.org/10.4208/cicp.oa-2021-0153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sinclair, J. L., et R. Jackson. « Gas-particle flow in a vertical pipe with particle-particle interactions ». AIChE Journal 35, no 9 (septembre 1989) : 1473–86. http://dx.doi.org/10.1002/aic.690350908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Jie, et J. A. M. Kuipers. « Gas-particle interactions in dense gas-fluidized beds ». Chemical Engineering Science 58, no 3-6 (février 2003) : 711–18. http://dx.doi.org/10.1016/s0009-2509(02)00599-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Knoop, Claas, et Udo Fritsching. « Gas/particle Interaction in Ultrasound Agitated Gas Flow ». Procedia Engineering 42 (2012) : 770–81. http://dx.doi.org/10.1016/j.proeng.2012.07.469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Jie, et J. A. M. Kuipers. « Effect of competition between particle–particle and gas–particle interactions on flow patterns in dense gas-fluidized beds ». Chemical Engineering Science 62, no 13 (juillet 2007) : 3429–42. http://dx.doi.org/10.1016/j.ces.2007.01.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Veyssiere, Bernard. « Detonations in Gas-Particle Mixtures ». Journal of Propulsion and Power 22, no 6 (novembre 2006) : 1269–88. http://dx.doi.org/10.2514/1.18378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Buehler, M. G., L. D. Bell et M. H. Hecht. « Alpha‐particle gas‐pressure sensor ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 14, no 3 (mai 1996) : 1281–87. http://dx.doi.org/10.1116/1.579942.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Gas/particle"

1

Strömgren, Tobias. « Modelling of turbulent gas-particle flow ». Licentiate thesis, KTH, Mechanics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4639.

Texte intégral
Résumé :

An Eulerian-Eulerian model for dilute gas-particle turbulent flows is

developed for engineering applications. The aim is to understand the effect of particles on turbulent flows. The model is implemented in a finite element code which is used to perform numerical simulations. The feedback from the particles on the turbulence and the mean flow of the gas in a vertical channel flow is studied. In particular, the influence of the particle response time and particle volume fraction on the preferential concentration of the particles near the walls, caused by the turbophoretic effect is explored. The study shows that the particle feedback decreases the accumulation of particles on the walls. It is also found that even a low particle volume fraction can have a significant impact on the turbulence and the mean flow of the gas. A model for the particle fluctuating velocity in turbulent gas-particle flow is derived using a set of stochastic differential

equations. Particle-particle collisions were taken into account. The model shows that the particle fluctuating velocity increases with increasing particle-particle collisions and that increasing particle response times decrease the fluctuating velocity.

Styles APA, Harvard, Vancouver, ISO, etc.
2

Strömgren, Tobias. « Modelling of turbulent gas-particle flow / ». Stockholm : Mekanik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Götz, Christian Walter. « Gas-particle partitioning and particle-bound deposition of semivolatile organic chemicals / ». Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Yonghao. « Particle-gas interactions in two-fluid models of gas-solid flows ». Thesis, University of Aberdeen, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367375.

Texte intégral
Résumé :
Modelling gas-solid two-phase flows using a two-fluid approach has two main difficulties: formulating constitutive laws for the particulate stresses and modelling the gas turbulence modulation. Due to the complex nature of the gas-particle interactions, there is no universal model covering every flow regime. In this thesis, three flow regimes with distinctive characteristics are studied, i.e. the very dense regime where the solid volume fraction, v2>5%, the dense flow regime where 5%≥1%, and the relatively dilute regime where 1%≥v2>0.1%. In the very dense flow regime, where the interstitial gas is normally neglected, the gas flow is assumed laminar and causes a viscous energy dissipation in the particulate phase. Numerical results for granular materials flowing down an inclined chute show that the interstitial gas may have a considerable effect in these flows. In the dense regime, where the inter-particle collisions are very important, a fluctuational energy transfer rate between the two phases is postulated, similar to that in a dilute Stokes flow. Consequently, the numerical solutions relax the restriction of elastic inter-particle collisions and show good agreement with experimental measurements. In the above two regimes, the kinetic theory of dry granular flow is adopted for the particulate stresses because the inter-particle collisions dominate the flows. The interstitial gas influence on the constitutive flow behaviour of the particulate phase is considered in the relatively dilute flow regime also, and a k-equation with a prescribed turbulent length scale is first used to address the gas turbulence modulation. Numerical results show that the gas turbulence has a significant effect on the microscopic flow behaviour of the particulate phase. The k-equation of Crowe & Gillandt (1998) has the best performance in predicting the experimentally observed phenomena. Finally, the influence of the particles on the k-Ε model coefficients are studied and the turbulent motion is considered to be restricted by the particles, thereby reducing the turbulent length scale directly. The simulation results indicate that these coefficients should be modified in order to incorporate the effect of particles.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Choi, Moon Kyu Gavalas George R. Gavalas George R. « Particle shape effects on gas-solid reactions / ». Diss., Pasadena, Calif. : California Institute of Technology, 1992. http://resolver.caltech.edu/CaltechETD:etd-07232007-152302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Strömgren, Tobias. « Model predictions of turbulent gas-particle shear flows ». Doctoral thesis, KTH, Mekanik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12135.

Texte intégral
Résumé :
A turbulent two-phase flow model using kinetic theory of granularflows for the particle phase is developed and implmented in afinite element code. The model can be used for engineeringapplications. However, in this thesis it is used to investigateturbulent gas-particle flows through numerical simulations.  The feedback from the particles on the turbulence and the meanflow of the gas in a vertical channel flow is studied. In particular,the influence of the particle response time, particle volumefraction and particle diameter on the preferential concentration ofthe particles near the walls, caused by the turbophoretic effect isexplored. The study shows that when particle feedback is includedthe accumulation of particles near the walls decreases. It is also foundthat even at low volume fractions particles can have a significant impacton the turbulence and the mean flow of the gas. The effect of particles on a developing turbulent vertical upward pipeflow is also studied. The development length is found to substantiallyincrease compared to an unladen flow. To understand what governs thedevelopment length a simple estimation was derived, showing that itincreases with decreasing particle diameters in accordance with themodel simulations. A model for the fluctuating particle velocity in turbulentgas-particle flow is derived using a set of stochastic differentialequations taking into account particle-particle collisions. Themodel shows that the particle fluctuating velocity increases whenparticle-particle collisions become more important and that increasingparticle response times reduces the fluctuating velocity. The modelcan also be used for an expansion of the deterministic model for theparticle kinetic energy.
QC20100726
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mansoorzadeh, Shahriar. « Numerical modelling of gas particle fluidised bed dynamics ». Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Slater, Shane Anthony. « Particle transport in laminar and turbulent gas flows ». Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Forsyth, Peter. « High temperature particle deposition with gas turbine applications ». Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:61556237-feed-43cb-9f4a-d0aed00ca3f8.

Texte intégral
Résumé :
This thesis describes validated improvements in the modelling of micron-sized particle deposition within gas turbine engine secondary air systems. The initial aim of the research was to employ appropriate models of instantaneous turbulent flow behaviour to RANS CFD simulations, allowing the trajectory of solid particulates in the flow to be accurately predicted. Following critical assessment of turbophoretic models, the continuous random walk (CRW) model was chosen to predict instantaneous fluid fluctuating velocities. Particle flow, characterised by non-dimensional deposition velocity and particle relaxation time, was observed to match published experimental vertical pipe flow data. This was possible due to redefining the integration time step in terms of Kolmagorov and Lagrangian time scales, reducing the disparity between simulations and experimental data by an order of magnitude. As no high temperature validation data for the CRW model were available, an experimental rig was developed to conduct horizontal pipe flow experiments under engine realistic conditions. Both the experimental rig, and a new particulate concentration measurement technique, based on post test aqueous solution electrical conductivity, were qualified at ambient conditions. These new experimental data compare well to published data at non-dimensional particle relaxation times below 7. Above, a tail off in the deposition rate is observed, potentially caused by a bounce or shear removal mechanism at higher particle kinetic energy. At elevated temperatures and isothermal conditions, similar behaviour is observed to the ambient data. Under engine representative thermophoretic conditions, a negative gas to wall temperature gradient is seen to increase deposition by up to 4.8 times, the reverse decreasing deposition by a factor of up to 560 relative to the isothermal data. Numerical simulations using the CRW model under-predict isothermal deposition, though capturing relative thermophoretic effects well. By applying an anisotropic Lagrangian time scale, and cross trajectory effects of the external gravitational force, good agreement was observed, the first inclusion of the effect within the CRW model. A dynamic mesh morphing method was then developed, enabling the effect of large scale particle deposition to be included in simulations, without continual remeshing of the fluid domain. Simulation of an impingement jet array showed deposition of characteristic mounds up to 30% of the hole diameter in height. Simulation of a passage with film-cooling hole off-takes generated hole blockage of up to 40%. These cases confirmed that the use of the CRW generated deposition locations in line with scant available experimental data, but widespread airline fleet experience. Changing rates of deposition were observed with the evolution of the deposits in both cases, highlighting the importance of capturing changing passage geometry through dynamic mesh morphing. The level of deposition observed, was however, greater than expected in a real engine environment and identifies a need to further refine bounce-stick and erosion modelling to complement the improved prediction of impact location identified in this thesis.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Swar, Rohan. « Particle Erosion of Gas Turbine Thermal Barrier Coating ». University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1259075518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Gas/particle"

1

Astrup, Poul. Turbulent gas-particle flow. Roskilde : Risø National Laboratory, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Varaksin, Aleksej Y., dir. Turbulent Particle-Laden Gas Flows. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68054-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

United States. National Aeronautics and Space Administration., dir. Analysis of the gas particle radiator. [Washington, D.C.] : National Aeronautics and Space Administration, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Varaksin, A. Y. Collisions in particle-laden gas flows. New York : Begell House, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dall, Henrik. Development of a Computer Model for Stationary Turbulent 3-D Gas-Particle Flows : Characteristics parameters of gas-particle flow. Roskilde, Denmark : Riso National Laboratory, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lock, G. D. Gas density and particle concentration measurements in shock-induced dusty-gas flows. [S.l.] : [s.n.], 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Backman, Ulrika. Studies on nanoparticle synthesis via gas-to-particle conversion. [Espoo, Finland] : VTT Technical Research Centre of Finland, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

A, Lane Douglas, dir. Gas and particle phase measurements of atmospheric organic compounds. Australia : Gordon and Breach, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

P, Astrup. Development of a computer model for stationary turbulent 3-D gas-particle flow : Numerical prediction of a turbulent gas-particle duct flow. Roskilde : Riso Library, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Garrick, Sean C., et Michael Bühlmann. Modeling of Gas-to-Particle Mass Transfer in Turbulent Flows. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-59584-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Gas/particle"

1

Fauchais, Pierre L., Joachim V. R. Heberlein et Maher I. Boulos. « Gas Flow–Particle Interaction ». Dans Thermal Spray Fundamentals, 113–226. Boston, MA : Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-68991-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Michoud, Vincent. « Particle-Gas Multiphasic Interactions ». Dans Atmospheric Chemistry in the Mediterranean Region, 185–97. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-82385-6_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yoshida, Hideto, et Hisao Makino. « Particle Sampling in Gas Flow ». Dans Powder Technology Handbook, 567–74. Fourth edition. | Boca Raton, FL : Taylor & Francis Group, LLC, 2020. : CRC Press, 2019. http://dx.doi.org/10.1201/b22268-69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Fan. « Detonation of Gas-Particle Flow ». Dans Shock Wave Science and Technology Reference Library, 87–168. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88447-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Seville, J. P. K., et R. Clift. « Gas cleaning at high temperatures : gas and particle properties ». Dans Gas Cleaning in Demanding Applications, 1–14. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1451-3_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Charlson, R. J. « Gas-to-Particle Conversion and CCN Production ». Dans Dimethylsulphide : Oceans, Atmosphere and Climate, 275–86. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1261-3_29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gori-Giorgi, Paola. « Uniform Electron Gas from Two-Particle Wavefunctions ». Dans Electron Correlations and Materials Properties 2, 379–87. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3760-8_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Valiveti, Prabhu, et Donald L. Koch. « Instability of Sedimenting Bidisperse Particle Gas Suspensions ». Dans In Fascination of Fluid Dynamics, 275–303. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4986-0_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kawano, A., et K. Kusano. « Continuum/particle interlocked simulation of gas detonation ». Dans Shock Waves, 215–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mazzei, Luca. « Recent Advances in Modeling Gas-Particle Flows ». Dans Handbook of Multiphase Flow Science and Technology, 1–43. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-4585-86-6_8-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Gas/particle"

1

Tsuji, Yutaka. « TURBULENCE IN GAS-PARTICLE FLOW ». Dans Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut : Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kocsis, M. « Gas-filled micro void particle detector ». Dans 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). IEEE, 2003. http://dx.doi.org/10.1109/nssmic.2003.1352065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Horton, Tom. « Gas strippers for neutral particle beam systems ». Dans 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Xinyu, et Goodarz Ahmadi. « Particle Effects on Gas-Liquid-Solid Flows ». Dans ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65695.

Texte intégral
Résumé :
A numerical simulation is carried out to study the role of particles in gas-liquid-solid flows in bubble columns. An Eulerian-Lagrangian model is used and the liquid flow is modeled using a volume-averaged system of governing equations, while motions of bubbles and particles are evaluated using Lagrangian trajectory analysis. It is assumed that the bubbles remain spherical. The interactions between bubble-liquid and particle-liquid are included in the study. The discrete phase equations include drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions are accounted for by the hard sphere model approach. The bubble coalescence is also included in the model. Neutrally buoyant particles are used in the study. A parcel approach is used and a parcel represents a certain number of particles of same size, velocity, and other properties. Variation of particle loading is modeled by changing the corresponding number of particles in every parcel. In a previous work, the predicted results were compared with the experimental data, and good agreement was obtained. The transient flow characteristics of the three-phase flow are studied and the effects of particle loading on flow characteristics are discussed. The simulations show that the transient characteristics of the three-phase flow in a column are dominated by time-dependent vortices. The particle loading can affect the characteristics of the three-phase flows and flows with high particle loading evolve faster.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Boyd, Iain, et Quanhua Sun. « Particle simulation of micro-scale gas flows ». Dans 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-876.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

ISHII, R., et Y. UMEDA. « Free-jet flows of gas-particle mixtures ». Dans 4th Thermophysics and Heat Transfer Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mesyats, Gennady A. « High-power particle beams for gas lasers ». Dans Optics, Electro-Optics, and Laser Applications in Science and Engineering, sous la direction de G. Glen McDuff. SPIE, 1991. http://dx.doi.org/10.1117/12.43613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ward, Sayed A., M. A. Abd Allah et Amr A. Youssef. « Multi-particle initiated breakdown of gas mixtures inside compressed gas devices ». Dans 2012 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2012). IEEE, 2012. http://dx.doi.org/10.1109/ceidp.2012.6378793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Huajun, Yitung Chen, Hsuan-Tsung Hsieh et Nathan Siegel. « CFD Modeling of Gas Particle Flow Within a Solid Particle Solar Receiver ». Dans ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99044.

Texte intégral
Résumé :
A detailed three dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray tracing algorithm. Two kinds of solid particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the particle and gas velocity, temperature, particle solid volume fraction, and cavity efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lock, Gary D., et James J. Gottlieb. « Gas density and particle concentration measurements in shock-induced dusty-gas flows ». Dans Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Gas/particle"

1

Fowler, T. K. Particle transport and gas feed during gun injection. Office of Scientific and Technical Information (OSTI), mars 1999. http://dx.doi.org/10.2172/9633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), avril 1992. http://dx.doi.org/10.2172/7205354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sankaran Sundaresan. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows. Office of Scientific and Technical Information (OSTI), février 2010. http://dx.doi.org/10.2172/1007990.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), janvier 1993. http://dx.doi.org/10.2172/7045530.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), octobre 1992. http://dx.doi.org/10.2172/7045559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), avril 1993. http://dx.doi.org/10.2172/6552831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Durham, M. D. Flue gas conditioning for improved particle collection in electrostatic precipitators. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/5794372.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Anderson, Iver, et Jordan Tiarks. CONCENTRIC RING GAS ATOMIZATION DIE DESIGN FOR OPTIMIZED PARTICLE PRODUCTION. Office of Scientific and Technical Information (OSTI), août 2021. http://dx.doi.org/10.2172/1853951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Reed, D. T., J. Hoh, J. Emery, S. Okajima et T. Krause. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride. Office of Scientific and Technical Information (OSTI), juillet 1998. http://dx.doi.org/10.2172/303944.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Turner, J. E., R. N. Hamn, S. R. Hunter, W. A. Gibson, G. S. Hurst et H. A. Wright. Optical imaging of charged particle tracks in a gas. Final report. Office of Scientific and Technical Information (OSTI), septembre 1995. http://dx.doi.org/10.2172/114038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie