Littérature scientifique sur le sujet « Gas geochemistry »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gas geochemistry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Gas geochemistry"

1

Foland, Kenneth A. « Noble gas geochemistry ». Chemical Geology : Isotope Geoscience section 58, no 4 (juillet 1986) : 361. http://dx.doi.org/10.1016/0168-9622(86)90023-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mitchell, J. G. « Noble gas geochemistry ». Physics of the Earth and Planetary Interiors 37, no 4 (mars 1985) : 292–93. http://dx.doi.org/10.1016/0031-9201(85)90019-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Italiano, Francesco, Andrzej Solecki, Giovanni Martinelli, Yunpeng Wang et Guodong Zheng. « New Applications in Gas Geochemistry ». Geofluids 2020 (2 juillet 2020) : 1–3. http://dx.doi.org/10.1155/2020/4976190.

Texte intégral
Résumé :
Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applying this science in numerous fields. Noble gases, hydrocarbons, CO2, N2, H2, CO, and Hg vapor are measured by advanced methods in various environments and matrices including fluid inclusions. Following the “Geochemical Applications of Noble Gases”(2009), “Frontiers in Gas Geochemistry” (2013), and “Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies” (2017) published as special issues of Chemical Geology and “Gas geochemistry: From conventional to unconventional domains” (2018) published as a special issue of Marine and Petroleum Geology, this volume continues the tradition of publishing papers reflecting the diversity in scope and application of gas geochemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hanson, B. « GEOCHEMISTRY : A Scarcity of Gas ». Science 292, no 5525 (22 juin 2001) : 2219e—2221. http://dx.doi.org/10.1126/science.292.5525.2219e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hanson, B. « GEOCHEMISTRY : Stores of Heating Gas ». Science 301, no 5631 (18 juillet 2003) : 279a—279. http://dx.doi.org/10.1126/science.301.5631.279a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Anonymous. « JGR special section : Gas Geochemistry ». Eos, Transactions American Geophysical Union 66, no 15 (1985) : 161. http://dx.doi.org/10.1029/eo066i015p00161-04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ott, Ulrich. « Noble gas geochemistry and cosmochemistry ». Geochimica et Cosmochimica Acta 59, no 22 (novembre 1995) : 4785–86. http://dx.doi.org/10.1016/0016-7037(95)90050-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Duddridge, G. A., P. Grainger et E. M. Durrance. « Fault detection using soil gas geochemistry ». Quarterly Journal of Engineering Geology and Hydrogeology 24, no 4 (novembre 1991) : 427–35. http://dx.doi.org/10.1144/gsl.qjeg.1991.024.04.09.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Martinelli, G. « Gas Geochemistry and 222Rn Migration Process ». Radiation Protection Dosimetry 78, no 1 (1 juillet 1998) : 77–82. http://dx.doi.org/10.1093/oxfordjournals.rpd.a032338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Clayton, J. L. « Geochemistry of coalbed gas – A review ». International Journal of Coal Geology 35, no 1-4 (février 1998) : 159–73. http://dx.doi.org/10.1016/s0166-5162(97)00017-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Gas geochemistry"

1

Pasilis, Sofie Portia. « Effect of citric acid on uranyl(VI) solution speciation, gas-phase chemistry and surface interactions with alumina ». Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280730.

Texte intégral
Résumé :
Activities related to nuclear weapons production have left a legacy of uranium contamination in the United States. Understanding the chemical interactions that uranium undergoes in the environment is important for prediction of uranium mobility and development of remediation strategies. A detailed spectroscopic examination of the pH-dependent behavior of the UO₂²⁺-citrate system in aqueous solution was completed using Raman, ATR-FTIR, and NMR spectroscopies, combined with ESI-MS. Three structurally-distinct UO₂²⁺-citrate complexes, {(UO₂)₂Cit2}²⁻, {(UO₂)₃Cit₃}³⁻, and (UO₂)₃Cit₂ exist in dynamic equilibrium over a pH range from 2 to 9. ¹⁷O and ¹³C NMR data confirm the previously published structure of {(UO₂)₂Cit₂}²⁻ and indicate that {(UO₂)₃Cit₃}³⁻ is a symmetric, fluxional molecule. The (UO₂)₃Cit₂ complex was found to have a rigid structure and two structural isomers. Chemical interactions of U(VI), citric acid and Al₂O₃ were investigated using ATR-FTIR spectroscopy to examine how complexation of U(VI) by citrate affects adsorption of U(VI) to Al₂O₃. Participation in UO₂²⁺-citrate complexes does not significantly affect the ability of citrate to chemisorb to Al₂O₃. The UO₂²⁺-citrate complexes dissociate upon adsorption, with hydrolysis of UO₂²⁺. Adsorption isotherms developed from ATR-FTIR data indicate enhanced citrate adsorption to Al₂O₃ in the presence of UO₂²⁺ , suggesting that UO₂²⁺ acts as a central link between two citrate ligands, one of which is complexed to Al₂O₃. UO₂²⁺-citrate complexes can physisorb to citrate-saturated Al₂O₃. This study demonstrates how an in-depth infrared spectroscopic analysis of UO₂²⁺-ligand complexes both in solution and adsorbed to oxide surfaces can be used to understand the adsorption mechanisms of these complexes. ESI-MS was investigated for the characterization of U(VI) species in groundwater. Both ion trap and FTICR instruments were used. UO₂²⁺ forms complexes with ligands such as acetate, trifluoroacetate, and nitrate, which readily react with CH₃CN, CH₃OH, and H₂O to form solvated gas-phase species of the form [(UO₂L)Sn]⁺, where L represents the ligand, S represents solvent, and 1 ≤ n ≤ 4. n is directly related to the number of available coordination sites on UO₂²⁺, providing insight into the coordination environment of UO₂²⁺. Solvent exchange and addition reactions readily occur. UO₂²⁺ also forms coordinately saturated negatively-charged complexes with nitrate. UO₂²⁺-carbonate complexes were also investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Phillips, William Morton. « Applications of noble gas cosmogenic nuclides to geomorphology ». Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282369.

Texte intégral
Résumé :
The buildup of the cosmogenic nuclides ³He and ²¹Ne in surficial rocks permit exposure ages and erosion rates to be estimated. This dissertation extends the cosmogenic exposure technique to garnets, plagioclase with significant nonspallation ²¹Ne components, and alluvial fill terraces. Garnets from Nanga Parbat, Pakistan have low nucleogenic ³He and moderate radiogenic ⁴He concentrations. ³He exposure ages from garnets in glacial erratics indicate glacial advances at Nanga Parbat at about 16 ka and 55 ka. 3He in alluvial garnets suggests that denudation in small unglaciated basins proceeds 5 to 7 times slower than glacial erosion, and 10 to nearly 100 times slower than regional rock exhumation and surface uplift. Rocks older than several million years possess nucleogenic and mugenic ²¹Ne and ³He components that must be resolved for accurate exposure ages. These nonspallation components in plagioclase and clinopyroxene from the Miocene Columbia River Basalt Group are best isolated with shielded samples. Analyses of ⁴He, U, Th, and Li systematically underpredict the amount of nonspallation ²¹Ne and ³He present in shielded samples, probably because of mugenic production. Step heating experiments suggest that ²¹Ne diffusive loss from plagioclase is possible, but most samples do not exhibit such ²¹Ne loss. The ratio of ²¹Ne in plagioclase and ³He in clinopyroxene is generally constant after correction for the nonspallation component, indicating that little or no ²¹Ne loss has occurred. The last highly erosive floods at Grand Coulee occurred at about 21 ka, early in the cycle of Missoula flooding. Nuclide inheritance must be resolved for accurate exposure ages of stream fill terraces. Depth profiles of cosmogenic ²¹Ne in quartz from terraces on the Pajarito Plateau, northern New Mexico resolve nuclide inheritance. Three patterns of depth profiles are recognized: (1) downward decreasing; (2) downward increasing; and (3) uniform; types 2 and 3 are associated with cumulate deposits and bioturbation, respectively. Inheritance corrected exposure ages for the terraces agree with independent radiocarbon and soil development ages. Denudation rates estimated from the profiles are higher for fill terraces than for straths.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stra̜poć, Dariusz. « Coalbed gas origin and distribution in the southeastern Illinois Basin ». [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3292447.

Texte intégral
Résumé :
Thesis (Ph.D.)--Indiana University, Dept. of Geological Sciences, 2007.
Title from dissertation home page (viewed May 29, 2008). Source: Dissertation Abstracts International, Volume: 68-11, Section: B, page: 7193. Advisers: Arndt Scimmelmann; Maria Mastalerz.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hood, Eda Maria. « Characterization of air-sea gas exchange processes and dissolved gas/ice interactions using noble gasses ». Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/9815.

Texte intégral
Résumé :
Thesis (Ph. D.)--Joint Program in Marine Chemistry and Geochemistry, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, 1998.
Includes bibliographical references (p. 251-266).
by Eda Maria Hood.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Moore, Myles Thomas. « An Integrative Geochemical Technique to Determine the Source and Timing of Natural Gas Formation in Gas Hydrates ». The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577959057433697.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hilton, D. R. « A study of hydrothermal systems using rare gas isotopes ». Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mulshaw, Sean Cartwright. « An evaluation of hydrocarbon gas geochemistry as a primary mineral exploration technique ». Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jackson, Richard E. « Geochemistry of coalbed natural gas produced waters in the Powder River Basin, Wyoming ». Laramie, Wyo. : University of Wyoming, 2009. http://proquest.umi.com/pqdweb?did=1799840421&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Moore, Myles Thomas. « Noble Gas and Hydrocarbon Geochemistry of Coalbed Methane Fields from the Illinois Basin ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462561493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Solano-Acosta, Wilfrido. « Controls on coalbed methane potential and gas sorption characteristics of high-volatile bituminous coals in Indiana ». [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3277989.

Texte intégral
Résumé :
Thesis (Ph.D.)--Indiana University, Dept. of Geological Sciences, 2007.
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 5814. Advisers: Arndt Schimmelmann; Maria Mastalerz. Title from dissertation home page (viewed May 9, 2008).
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Gas geochemistry"

1

Claude, Dubois, dir. Gas geochemistry. Northwood : Science Reviews, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

A, Podosek Frank, dir. Noble gas geochemistry. 2e éd. New York : Cambridge University Press, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ozima, Minoru. Noble gas geochemistry. 2e éd. Cambridge : Cambridge University Press, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hunt, John Meacham. Petroleum geochemistry and geology. 2e éd. New York : W.H. Freeman, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

1929-, Chilingar George V., dir. Geology and geochemistry of oil and gas. Amsterdam : Elsevier, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Geochemistry in petroleum exploration. Boston : International Human Resources Development Corp., 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hunt, John M. Petroleum geochemistry and geology. 2e éd. New York, NY : W.H. Freeman, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1942-, Wiraka Haradewa Siṅgha, Guru Nanak Dev University et International Colloquium on Rare Gas Geochemistry (3rd : 1995 : Guru Nanak Dev University), dir. Rare gas geochemistry : Applications in earth & environmental sciences. Amritsar : Guru Nanak Dev University, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ford, Jacqueline. The noble gas geochemistry of ancient mineralizing fluids. Manchester : University ofManchester, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

A, Nivin V., Pripachkin V. A et Tolstikhin I. N, dir. Geokhimii͡a︡ gazov ėndogennykh obrazovaniĭ. S.-Peterburg : Nauka, S.-Peterburgskoe ot-nie, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Gas geochemistry"

1

Ruffine, Livio, Sandrine Chéron, Emmanuel Ponzevera, Christophe Brandily, Patrice Woerther, Vivien Guyader, Audrey Boissier, Jean-Pierre Donval et Germain Bayon. « Geochemistry ». Dans Gas Hydrates 2, 57–84. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119451174.ch6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tedesco, Steven A. « Soil Gas ». Dans Surface Geochemistry in Petroleum Exploration, 35–72. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2660-5_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Waples, Douglas W. « Bitumen, Petroleum, and Natural Gas ». Dans Geochemistry in Petroleum Exploration, 43–61. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5436-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Aeschbach-Hertig, Werner, et D. Kip Solomon. « Noble Gas Thermometry in Groundwater Hydrology ». Dans Advances in Isotope Geochemistry, 81–122. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28836-4_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Prinzhofer, Alain. « Noble Gases in Oil and Gas Accumulations ». Dans Advances in Isotope Geochemistry, 225–47. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28836-4_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kastner, Miriam. « Gas Hydrates in Convergent Margins : Formation, Occurrence, Geochemistry, and Global Significance ». Dans Natural Gas Hydrates, 67–86. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm124p0067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bakel, Allen J., R. Paul Philp et A. Galvez-Sinibaldi. « Characterization of Organosulfur Compounds in Oklahoma Coals by Pyrolysis—Gas Chromatography ». Dans Geochemistry of Sulfur in Fossil Fuels, 326–44. Washington, DC : American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0429.ch020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Porcelli, D., C. J. Ballentine et R. Wieler. « 1. An Overview of Noble Gas Geochemistry and Cosmochemistry ». Dans Noble Gases, sous la direction de Donald P. Porcelli, Chris J. Ballentine et Rainer Wieler, 1–20. Berlin, Boston : De Gruyter, 2002. http://dx.doi.org/10.1515/9781501509056-003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

White, C. M. « An Introduction to Open-Tubular Gas Chromatography--Analysis of Fossil and Synthetic Fuels ». Dans Composition, Geochemistry and Conversion of Oil Shales, 107–23. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0317-6_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mehmood, Asif, Jun Yao, Dong Yan Fan, Kelvin Bongole et Ubedullah Ansari. « Utilization of Abandoned Oil and Gas Wells for Geothermal Energy Production in Pakistan ». Dans Advances in Petroleum Engineering and Petroleum Geochemistry, 181–83. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_42.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Gas geochemistry"

1

Gallo, Y. Le, A. Garcia Dominguez et B. Gonzalez Cansado. « Hydrogen reactivity with a carbonated underground gas storage ». Dans Third EAGE Geochemistry Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021623012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

D. Jenden, Peter, Pierre J. Van Laer et Ahmed M. Al-Hakami. « Geochemistry of Saudi Arabian Natural Gas ». Dans GEO 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.248.225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Luo, P., et K. Arouri. « Combined Field and Pyrolytic Gas Geochemistry Data Determine Sources of Gas and Expulsion Efficiency ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Levaché, D., D. Dhont, P. Lattes, A. Vidal, L. Beguery, V. Del Marro, F. Besson et V. Rochet. « Underwater Gliders for Oil and Gas Exploration ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902859.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

« Chemical and isotopic variations of released gas from canister desorption of r gas shales in Sichuan Basin, China ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ostertag-Henning, C. « Gas Production by Ionizing Radiation in Sedimentary Rocks ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kashapov, R. S., I. V. Goncharov, V. V. Samoilenko, N. V. Oblasov, M. A. Veklich, E. N. Konovalova, S. V. Fadeeva et A. V. Zherdeva. « Experimental Modeling of the Bazhenov Formation Gas Generation ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gao, Y., et X. Xia. « Late Archean Gas from Hydrogen Biodegradation of Organic Matter ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902770.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ferreira, A., G. Silva, T. Freire, E. T. de Morais et A. Prinzhofer. « Gas Sampling and Preservation in Different Light Glass Containers ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902777.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lu, F. H. « Determining unconventional shale gas maturity : A carbonate vein tale ». Dans 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Gas geochemistry"

1

Wade, J. A. Oil and gas occurrences and geochemistry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/210688.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Moir, P. N., et J. S. Bell. Geochemistry, I, Labrador sea, Geothermal gradients and depth to Gas Generation. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/127196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Constenius, Kurt N. Gas and Water Geochemistry Results from the Rays Valley Quadrangle, Utah. Utah Geological Survey, juillet 2020. http://dx.doi.org/10.34191/ofr-723.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lacerda Silva, P., G. R. Chalmers, A. M. M. Bustin et R. M. Bustin. Gas geochemistry and the origins of H2S in the Montney Formation. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329794.

Texte intégral
Résumé :
The geology of the Montney Formation and the geochemistry of its produced fluids, including nonhydrocarbon gases such as hydrogen sulfide were investigated for both Alberta and BC play areas. Key parameters for understanding a complex petroleum system like the Montney play include changes in thickness, depth of burial, mass balance calculations, timing and magnitudes of paleotemperature exposure, as well as kerogen concentration and types to determine the distribution of hydrocarbon composition, H2S concentrations and CO2 concentrations. Results show that there is first-, second- and third- order variations in the maturation patterns that impact the hydrocarbon composition. Isomer ratio calculations for butane and propane, in combination with excess methane estimation from produced fluids, are powerful tools to highlight effects of migration in the hydrocarbon distribution. The present-day distribution of hydrocarbons is a result of fluid mixing between hydrocarbons generated in-situ with shorter-chained hydrocarbons (i.e., methane) migrated from deeper, more mature areas proximal to the deformation front, along structural elements like the Fort St. John Graben, as well as through areas of lithology with higher permeability. The BC Montney play appears to have hydrocarbon composition that reflects a larger contribution from in-situ generation, while the Montney play in Alberta has a higher proportion of its hydrocarbon volumes from migrated hydrocarbons. Hydrogen sulphide is observed to be laterally discontinuous and found in discrete zones or pockets. The locations of higher concentrations of hydrogen sulphide do not align with the sulphate-rich facies of the Charlie Lake Formation but can be seen to underlie areas of higher sulphate ion concentrations in the formation water. There is some alignment between CO2 and H2S, particularly south of Dawson Creek; however, the cross-plot of CO2 and H2S illustrates some deviation away from any correlation and there must be other processes at play (i.e., decomposition of kerogen or carbonate dissolution). The sources of sulphur in the produced H2S were investigated through isotopic analyses coupled with scanning electron microscopy, energy dispersive spectroscopy, and mineralogy by X-ray diffraction. The Montney Formation in BC can contain small discrete amounts of sulphur in the form of anhydrite as shown by XRD and SEM-EDX results. Sulphur isotopic analyses indicate that the most likely source of sulphur is from Triassic rocks, in particular, the Charlie Lake Formation, due to its close proximity, its high concentration of anhydrite (18-42%), and the evidence that dissolved sulphate ions migrated within the groundwater in fractures and transported anhydrite into the Halfway Formation and into the Montney Formation. The isotopic signature shows the sulphur isotopic ratio of the anhydrite in the Montney Formation is in the same range as the sulphur within the H2S gas and is a lighter ratio than what is found in Devonian anhydrite and H2S gas. This integrated study contributes to a better understanding of the hydrocarbon system for enhancing the efficiency of and optimizing the planning of drilling and production operations. Operators in BC should include mapping of the Charlie Lake evaporites and structural elements, three-dimensional seismic and sulphate ion concentrations in the connate water, when planning wells, in order to reduce the risk of encountering unexpected souring.
Styles APA, Harvard, Vancouver, ISO, etc.
5

P., Zhao, et Liao Z. Preliminary Gas and Isotope Geochemistry in the Rehai Geothermal Field, P.R. China. Office of Scientific and Technical Information (OSTI), janvier 1995. http://dx.doi.org/10.2172/895930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bell, J. S. Geochemistry, III, Labrador sea, Oil - Prone source Rocks and Oil and Gas Occurrence. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/127198.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cranston, R. E. Pore-water geochemistry, JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lorenson, T. D., M. J. Whiticar, A. Waseda, S. R. Dallimore et T S Collett. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Waseda, A., et T. Uchida. Organic geochemistry of gas, gas hydrate, and organic matter from the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/220756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ethier, A., I. D. Clark, S. R. Dallimore, R. Matsumoto et P. Middlestead. High-resolution isotope geochemistry of the gas-hydrate-free gas transition in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/220785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie