Littérature scientifique sur le sujet « GaN Power Devices »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « GaN Power Devices ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "GaN Power Devices"
Langpoklakpam, Catherine, An-Chen Liu, Yi-Kai Hsiao, Chun-Hsiung Lin et Hao-Chung Kuo. « Vertical GaN MOSFET Power Devices ». Micromachines 14, no 10 (16 octobre 2023) : 1937. http://dx.doi.org/10.3390/mi14101937.
Texte intégralCHU, K. K., P. C. CHAO et J. A. WINDYKA. « STABLE HIGH POWER GaN-ON-GaN HEMT ». International Journal of High Speed Electronics and Systems 14, no 03 (septembre 2004) : 738–44. http://dx.doi.org/10.1142/s0129156404002764.
Texte intégralNela, Luca, Ming Xiao, Yuhao Zhang et Elison Matioli. « A perspective on multi-channel technology for the next-generation of GaN power devices ». Applied Physics Letters 120, no 19 (9 mai 2022) : 190501. http://dx.doi.org/10.1063/5.0086978.
Texte intégralZhang, A. P., F. Ren, T. J. Anderson, C. R. Abernathy, R. K. Singh, P. H. Holloway, S. J. Pearton, D. Palmer et G. E. McGuire. « High-Power GaN Electronic Devices ». Critical Reviews in Solid State and Materials Sciences 27, no 1 (janvier 2002) : 1–71. http://dx.doi.org/10.1080/20014091104206.
Texte intégralOtsuka, Nobuyuki, Shuichi Nagai, Hidetoshi Ishida, Yasuhiro Uemoto, Tetsuzo Ueda, Tsuyoshi Tanaka et Daisuke Ueda. « (Invited) GaN Power Electron Devices ». ECS Transactions 41, no 8 (16 décembre 2019) : 51–70. http://dx.doi.org/10.1149/1.3631486.
Texte intégralMartín-Guerrero, Teresa M., Damien Ducatteau, Carlos Camacho-Peñalosa et Christophe Gaquière. « GaN devices for power amplifier design ». International Journal of Microwave and Wireless Technologies 1, no 2 (avril 2009) : 137–43. http://dx.doi.org/10.1017/s1759078709000178.
Texte intégralDi, Kuo, et Bingcheng Lu. « Gallium Nitride Power Devices in Magnetically Coupled Resonant Wireless Power Transfer Systems ». Journal of Physics : Conference Series 2463, no 1 (1 mars 2023) : 012007. http://dx.doi.org/10.1088/1742-6596/2463/1/012007.
Texte intégralRoberts, J., A. Mizan et L. Yushyna. « Optimized High Power GaN Transistors ». Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, HiTEN (1 janvier 2015) : 000195–99. http://dx.doi.org/10.4071/hiten-session6-paper6_1.
Texte intégralZhang, Yuhao, Ruizhe Zhang, Qihao Song, Qiang Li et J. Liu. « (Invited) Breakthrough Avalanche and Short Circuit Robustness in Vertical GaN Power Devices ». ECS Meeting Abstracts MA2022-01, no 31 (7 juillet 2022) : 1307. http://dx.doi.org/10.1149/ma2022-01311307mtgabs.
Texte intégralZhong, Min, Ying Xi Niu, Hai Ying Cheng, Chen Xi Yan, Zhi Yuan Liu et Dong Bo Song. « Advances for Enhanced GaN-Based HEMT Devices with p-GaN Gate ». Materials Science Forum 1014 (novembre 2020) : 75–85. http://dx.doi.org/10.4028/www.scientific.net/msf.1014.75.
Texte intégralThèses sur le sujet "GaN Power Devices"
Zhang, Yuhao Ph D. Massachusetts Institute of Technology. « GaN-based vertical power devices ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112002.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 163-170).
Power electronics based on Gallium Nitride (GaN) is expected to significantly reduce the losses in power conversion circuits and increase the power density. This makes GaN devices very exciting candidates for next-generation power electronics, for the applications in electric vehicles, data centers, high-power and high-frequency communications. Currently, both lateral and vertical structures are considered for GaN power devices. In particular, vertical GaN power devices have attracted significant attention recently, due to the potential for achieving high breakdown voltage and current levels without enlarging the chip size. In addition, these vertical devices show superior thermal performance than their lateral counterparts. This PhD thesis addresses several key obstacles in developing vertical GaN power devices. The commercialization of vertical GaN power devices has been hindered by the high cost of bulk GaN. The first project in this PhD thesis demonstrated the feasibility of making vertical devices on a low-cost silicon (Si) substrate for the first time. The demonstrated high performance shows the great potential of low-cost vertical GaN-on-Si devices for 600-V level high-current and high-power applications. This thesis has also studied the origin of the off-state leakage current in vertical GaN pn diodes on Si, sapphire and GaN substrates, by experiments, analytical calculations and TCAD simulations. Variable-range-hopping through threading dislocations was identified as the main off-state leakage mechanism in these devices. The design space of leakage current of vertical GaN devices has been subsequently derived. Thirdly, a novel GaN vertical Schottky rectifier with trench MIS structures and trench field rings was demonstrated. The new structure greatly enhanced the reverse blocking characteristics while maintaining a Schottky-like good forward conduction. This new device shows great potential for using advanced vertical Schottky rectifiers for high-power and high-frequency applications. Finally, we investigated a fundamental and significant challenge for GaN power devices: the lack of reliable and generally useable patterned pn junctions. Two approaches have been proposed to make lateral patterned pn junctions. Two devices, junction barrier Schottky devices and super-junction devices, have been designed and optimized. Preliminary experimental results were also demonstrated for the feasibility of making patterned pn junctions and fabricating novel power devices.
by Yuhao Zhang.
Ph. D.
Unni, Vineet. « Next-generation GaN power semiconductor devices ». Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11984/.
Texte intégralNakazawa, Satoshi. « Interface Charge Engineering in AlGaN/GaN Heterostructures for GaN Power Devices ». Kyoto University, 2019. http://hdl.handle.net/2433/244553.
Texte intégralLui, Dawei. « Active gate driver design for GaN FET power devices ». Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730883.
Texte intégralKumar, Ashwani. « Novel approaches to power efficient GaN and negative capacitance devices ». Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22492/.
Texte intégralLi, Ke. « Wide bandgap (SiC/GaN) power devices characterization and modeling : application to HF power converters ». Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10080/document.
Texte intégralCompared to traditional silicon (Si) semiconductor material, wide bandgap (WBG) materials like silicon carbide (SiC) and gallium nitride are gradually applied to fabricate power semiconductor devices, which are used in power converters to achieve high power efficiency, high operation temperature and high switching frequency. As those power devices are relatively new, their characterization and modeling are important to better understand their characteristics for better use. This dissertation is mainly focused on those WBG power semiconductor devices characterization, modeling and fast switching currents measurement. In order to measure their static characteristics, a single-pulse method is presented. A SiC diode and a "normally-off" SiC JFET is characterized by this method from ambient temperature to their maximal junction temperature with the maximal power dissipation around kilowatt. Afterwards, in order to determine power device inter-electrode capacitances, a measurement method based on the use of multiple current probes is proposed and validated by measuring inter-electrode capacitances of power devices of different technologies. Behavioral models of a Si diode and the SiC JFET are built by using the results of the above characterization methods, by which the evolution of the inter-electrode capacitances for different operating conditions are included in the models. Power diode models are validated with the measurements, in which the current is measured by a proposed current surface probe
Brooks, Clive Raymond. « GaN microwave power FET nonlinear modelling techniques ». Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4306.
Texte intégralENGLISH ABSTRACT: The main focus of this thesis is to document the formulation, extraction and validation of nonlinear models for the on-wafer gallium nitride (GaN) high-electron mobility (HEMT) devices manufactured at the Interuniversity Microelectronics Centre (IMEC) in Leuven, Belgium. GaN semiconductor technology is fast emerging and it is expected that these devices will play an important role in RF and microwave power amplifier applications. One of the main advantages of the new GaN semiconductor technology is that it combines a very wide band-gap with high electron mobility, which amounts to higher levels of gain at very high frequencies. HEMT devices based on GaN, is a fairly new technology and not many nonlinear models have been proposed in literature. This thesis details the design of hardware and software used in the development of the nonlinear models. An intermodulation distortion (IMD) measurement setup was developed to measure the second and higher-order derivative of the nonlinear drain current. The derivatives are extracted directly from measurements and are required to improve the nonlinear model IMD predictions. Nonlinear model extraction software was developed to automate the modelling process, which was fundamental in the nonlinear model investigation. The models are implemented in Agilent’s Advanced Design System (ADS) and it is shown that the models are capable of accurately predicting the measured S-parameters, large-signal singletone and two-tone behaviour of the GaN devices.
AFRIKAANSE OPSOMMING: Die hoofdoel van hierdie tesis is om die formulering, ontrekking en validasie van nie-lineêre modelle vir onverpakte gallium nitraat (GaN) hoë-elektronmobilisering transistors (HEMTs) te dokumenteer. Die transistors is vervaaardig by die Interuniversity Microelectronics Centre (IMEC) in Leuven, België. GaN-halfgeleier tegnologie is besig om vinnig veld te wen en daar word voorspel dat hierdie transistors ʼn belangrike rol gaan speel in RF en mikrogolf kragversterker toepassings. Een van die hoof voordele van die nuwe GaN-halfgeleier tegnologie is dat dit 'n baie wyd band-gaping het met hoë-elektronmobilisering, wat lei tot hoë aanwins by mikrogolf frekwensies. GaN HEMTs is 'n redelik nuwe tegnologie en nie baie nie-lineêre modelle is al voorgestel in literatuur nie. Hierdie tesis ondersoek die ontwerp van die hardeware en sagteware soos gebruik in die ontwikkeling van nie-lineêre modelle. 'n Intermodulasie distorsie-opstelling (IMD-opstelling) is ontwikkel vir die meting van die tweede en hoër orde afgeleides van die nie-lineêre stroom. Die afgeleides is direk uit die metings onttrek en moet die nie-lineêre IMD-voorspellings te verbeter. Nie-lineêre onttrekking sagteware is ontwikkel om die modellerings proses te outomatiseer. Die modelle word geïmplementeer in Agilent se Advanced Design System (ADS) en bewys dat die modelle in staat is om akkurate afgemete S-parameters, grootsein enkeltoon en tweetoon gedrag van die GaN-transistors te kan voorspel.
Borga, Matteo. « Characterization and modeling of GaN-based transistors for power applications ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422355.
Texte intégralMurillo, Carrasco Luis. « Modelling, characterisation and application of GaN switching devices ». Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/modelling-characterisation-and-application-of-gan-switching-devices(a227368d-1029-4005-950c-2a098a5c5633).html.
Texte intégralWaller, William Michael. « Optimisation of AlGaN/GaN power devices : interface analysis, fieldplate control and current collapse ». Thesis, University of Bristol, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743050.
Texte intégralLivres sur le sujet "GaN Power Devices"
Meneghini, Matteo, Gaudenzio Meneghesso et Enrico Zanoni, dir. Power GaN Devices. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43199-4.
Texte intégralDi Paolo Emilio, Maurizio. GaN and SiC Power Devices. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3.
Texte intégralFan, Ren, et Zolper J. C, dir. Wide energy bandgap electronic devices. River Edge, NJ : World Scientific Pub., 2003.
Trouver le texte intégralI︠A︡ntovskiĭ, E. I. Zero emissions power cycles. Boca Raton : CRC Press, 2009.
Trouver le texte intégralI︠A︡ntovskiĭ, E. I. Zero emissions power cycles. Boca Raton : CRC Press, 2009.
Trouver le texte intégralJ, Górski, et Shokotov M, dir. Zero emissions power cycles. Boca Raton : Taylor & Francis, 2009.
Trouver le texte intégral1937-, Johnson J. H., Baines Thomas M et Clerc James C, dir. Diesel particulate emissions : Measurement techniques, fuel effects and control technology. Warrendale, PA : Society of Automotive Engineers, 1992.
Trouver le texte intégral1932-, Van Basshuysen Richard, dir. Reduced emissions and fuel consumption in automobile engines. Wien : Springer-Verlag, 1995.
Trouver le texte intégralCommittee, New Jersey Legislature General Assembly Environment and Solid Waste. Committee meeting of Assembly Environment and Solid Waste Committee : Assembly bill nos. 409 and 2439 : discussion on the implementation of the phase II California Low Emission Vehicle program beginning in calendar year 2006. Trenton, N.J : Office of Legislative Services, Public Information Office, Hearing Unit, 2002.
Trouver le texte intégralCommittee, New Jersey Legislature General Assembly Environment and Solid Waste. Committee meeting of Assembly Environment and Solid Waste Committee : Assembly bill no. 3301 : the Global Warming Response Act : Committee Room 9, State House Annex, Trenton, New Jersey, February 26, 2007, 2:00 p.m. Trenton, NJ : New Jersey State Legislature, Assembly Environment and Solid Waste Committee, 2007.
Trouver le texte intégralChapitres de livres sur le sujet "GaN Power Devices"
Di Paolo Emilio, Maurizio. « GaN Applications ». Dans GaN and SiC Power Devices, 93–119. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_6.
Texte intégralDi Paolo Emilio, Maurizio. « Silicon Power Devices ». Dans GaN and SiC Power Devices, 9–17. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_2.
Texte intégralDi Paolo Emilio, Maurizio. « Gallium Nitride Power Devices ». Dans GaN and SiC Power Devices, 49–91. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_5.
Texte intégralZekentes, Konstantinos, Victor Veliadis, Sei-Hyung Ryu, Konstantin Vasilevskiy, Spyridon Pavlidis, Arash Salemi et Yuhao Zhang. « SiC and GaN Power Devices ». Dans More-than-Moore Devices and Integration for Semiconductors, 47–104. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21610-7_2.
Texte intégralDi Paolo Emilio, Maurizio. « Silicon Carbide Devices ». Dans GaN and SiC Power Devices, 143–63. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_8.
Texte intégralDi Paolo Emilio, Maurizio. « Power Electronics Processing ». Dans GaN and SiC Power Devices, 1–7. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_1.
Texte intégralDeboy, Gerald, et Matthias Kasper. « Positioning and Perspectives of GaN-Based Power Devices ». Dans GaN Technology, 353–60. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63238-9_8.
Texte intégralBin, Dong. « 9 The Packaging Technologies for GaN HEMTs ». Dans Gallium Nitride Power Devices, 261–80. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 : CRC Press, 2017. http://dx.doi.org/10.1201/9781315196626-10.
Texte intégralMeneghesso, Gaudenzio, Enrico Zanoni, Matteo Meneghini, Maria Ruzzarin et Isabella Rossetto. « Reliability of GaN-Based Power Devices ». Dans Integrated Circuits and Systems, 75–99. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77994-2_4.
Texte intégralAhirwar, Archana, Poonam Singh, S. K. Tomar, Meena Mishra, Ashok Kumar et B. K. Sehgal. « GaN HEMT Based S-Band Power Amplifier ». Dans Physics of Semiconductor Devices, 75–76. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_17.
Texte intégralActes de conférences sur le sujet "GaN Power Devices"
Fischer, Sandra, Florian Mayer, Verena Leitgeb, Lisa Mitterhuber et Elke Kraker. « Thermal characterization of vertical GaN based power devices ». Dans 2024 30th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/therminic62015.2024.10732258.
Texte intégralIshida, Masahiro, Yasuhiro Uemoto, Tetsuzo Ueda, Tsuyoshi Tanaka et Daisuke Ueda. « GaN power switching devices ». Dans 2010 International Power Electronics Conference (IPEC - Sapporo). IEEE, 2010. http://dx.doi.org/10.1109/ipec.2010.5542030.
Texte intégralLi, Wenwen, et Dong Ji. « Vertical GaN Power Devices ». Dans 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2023. http://dx.doi.org/10.1109/edtm55494.2023.10103087.
Texte intégralChen, Kevin J., et Chunhua Zhou. « GaN Smart Discrete power devices ». Dans 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667646.
Texte intégralZhang, Y., M. Sun, A. Munoz, J. A. Perozek, X. Gao, K. Shepard, S. Bedell, D. Sadana et T. Palacios. « Novel Vertical GaN Power Devices ». Dans 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.d-1-01.
Texte intégralCHU, K. K., P. C. CHAO et J. A. WINDYKA. « STABLE HIGH POWER GaN-ON-GaN HEMT ». Dans High Performance Devices - 2004 IEEE Lester Eastman Conference. Singapore : World Scientific Publishing Co. Pte. Ltd., 2005. http://dx.doi.org/10.1142/9789812702036_0019.
Texte intégralChristensen, Adam, et Samuel Graham. « Heat Dissipation in GaN Power Semiconductor Devices ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61525.
Texte intégralKachi, Tetsu, Masakazu Kanechika et Tsutomu Uesugi. « Automotive Applications of GaN Power Devices ». Dans 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2011. http://dx.doi.org/10.1109/csics.2011.6062459.
Texte intégralKachi, Tetsu. « GaN Power Devices for Automotive Applications ». Dans 2007 IEEE Compound Semiconductor Integrated Circuit Symposium. IEEE, 2007. http://dx.doi.org/10.1109/csics07.2007.6.
Texte intégralUesugi, T., et Tetsu Kachi. « GaN power devices for automotive applications ». Dans SPIE OPTO, sous la direction de Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon et Hiroshi Fujioka. SPIE, 2013. http://dx.doi.org/10.1117/12.2002248.
Texte intégralRapports d'organisations sur le sujet "GaN Power Devices"
Baker, Bryant. A 3.6 GHz Doherty Power Amplifier with a 40 dBm Saturated Output Power using GaN on SiC HEMT Devices. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.1780.
Texte intégralMazumder, Sudip K. Optically-gated Non-latched High Gain Power Device. Fort Belvoir, VA : Defense Technical Information Center, novembre 2008. http://dx.doi.org/10.21236/ada493165.
Texte intégralKurtz, Steven Ross, David Martin Follstaedt, Alan Francis Wright, Albert G. Baca, Ronald D. Briggs, Paula Polyak Provencio, Nancy A. Missert et al. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers. Office of Scientific and Technical Information (OSTI), décembre 2005. http://dx.doi.org/10.2172/883465.
Texte intégralBajwa, Abdullah, et Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), février 2019. http://dx.doi.org/10.55274/r0011558.
Texte intégralHopper. L30500 Analysis of the Effects of High-Voltage Direct-Current Transmission Systems on Buried Pipelines. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), janvier 2008. http://dx.doi.org/10.55274/r0010196.
Texte intégralSoramäki, Kimmo. Financial Cartography. FNA, octobre 2019. http://dx.doi.org/10.69701/ertx8007.
Texte intégral