Articles de revues sur le sujet « Galactose oxidase like complexes »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Galactose oxidase like complexes.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Galactose oxidase like complexes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Wang, Yadong, et T. D. P. Stack. « Galactose Oxidase Model Complexes : Catalytic Reactivities ». Journal of the American Chemical Society 118, no 51 (janvier 1996) : 13097–98. http://dx.doi.org/10.1021/ja9621354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chudin, A. A., et E. V. Kudryashova. « Impact of lipid matrix composition on the activity of membranotropic enzymes galactonolactone oxidase from Trypanosoma cruzi and L-galactono-1,4-lactone dehydrogenase from <i>Arabidopsis thaliana</i> ; in the system of reverse micelles ». Биохимия 88, no 12 (15 décembre 2023) : 2457–68. http://dx.doi.org/10.31857/s0320972523120096.

Texte intégral
Résumé :
The study of many membrane enzymes in an aqueous medium is difficult due to the loss of their catalytic activity, which makes it necessary to use membrane-like systems, such as reverse micelles of surfactants in nonpolar organic solvents. However, it should be taken into account that micelles are a simplified model of natural membranes, since membranes contain many different components, a significant part of which are phospholipids. In this work, we studied the impact of the main phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), on the activity of membrane enzymes using galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana (AtGALDH) as an examples. Effect of the structure (and charge) of the micelle-forming surfactant itself on the activity of both enzymes has been studied using an anionic surfactant (AOT), a neutral surfactant (Bridge-96), and a mixture of cationic and anionic surfactants (CTAB and AOT) as an examples. The pronounced effect of addition of PC and PE lipids on the activity of AtGALDH and TcGAL has been detected, which manifests as increase in catalytic activity and significant change in the activity profile. This can be explained by formation of the tetrameric form of enzymes and/or protein-lipid complexes. By varying composition and structure of the micelle-forming surfactants (AOT, CTAB, and Brijdge-96 and their combinations) it has been possible to change catalytic properties of the enzyme due to effect of the surfactant on the micelle size, lipid mobility, charge, and rigidity of the matrix itself.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Breza, Martin, et Stanislav Biskupič. « N-Salicylideneaminoacidato copper(II) complexes as galactose oxidase model compounds ». Journal of Molecular Structure : THEOCHEM 760, no 1-3 (février 2006) : 141–45. http://dx.doi.org/10.1016/j.theochem.2005.12.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vaidyanathan, M., K. R. Justin Thomas et M. Palaniandavar. « Models for galactose oxidase : Copper(II) complexes with axial phenolate ». Journal of Inorganic Biochemistry 59, no 2-3 (août 1995) : 686. http://dx.doi.org/10.1016/0162-0134(95)97774-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Oshita, Hiromi, et Yuichi Shimazaki. « π–π Stacking Interaction of Metal Phenoxyl Radical Complexes ». Molecules 27, no 3 (8 février 2022) : 1135. http://dx.doi.org/10.3390/molecules27031135.

Texte intégral
Résumé :
π–π stacking interaction is well-known to be one of the weak interactions. Its importance in the stabilization of protein structures and functionalization has been reported for various systems. We have focused on a single copper oxidase, galactose oxidase, which has the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with the indole ring of the proximal tryptophan residue and catalyzes primary alcohol oxidation to give the corresponding aldehyde. This stacking interaction has been considered to stabilize the alkylthio-phenoxyl radical, but further details of the interaction are still unclear. In this review, we discuss the effect of the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with an indole ring.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Verma, P., R. C. Pratt, T. Storr, E. C. Wasinger et T. D. P. Stack. « Sulfanyl stabilization of copper-bonded phenoxyls in model complexes and galactose oxidase ». Proceedings of the National Academy of Sciences 108, no 46 (7 novembre 2011) : 18600–18605. http://dx.doi.org/10.1073/pnas.1109931108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sokolowski, Achim, Heiko Leutbecher, Thomas Weyhermüller, Robert Schnepf, Eberhard Bothe, Eckhard Bill, Peter Hildebrandt et K. Wieghardt. « Phenoxyl-copper(II) complexes : models for the active site of galactose oxidase ». JBIC Journal of Biological Inorganic Chemistry 2, no 4 (août 1997) : 444–53. http://dx.doi.org/10.1007/s007750050155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pratt, Russell C., et T. Daniel P. Stack. « Intramolecular Charge Transfer and Biomimetic Reaction Kinetics in Galactose Oxidase Model Complexes ». Journal of the American Chemical Society 125, no 29 (juillet 2003) : 8716–17. http://dx.doi.org/10.1021/ja035837j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Figueiredo, Carina, Carolin Psotta, Kavita Jayakumar, Anna Lielpetere, Tanushree Mandal, Wolfgang Schuhmann, Dónal Leech et al. « Effect of Protection Polymer Coatings on the Performance of an Amperometric Galactose Biosensor in Human Plasma ». Biosensors 14, no 4 (30 mars 2024) : 167. http://dx.doi.org/10.3390/bios14040167.

Texte intégral
Résumé :
Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kruse, Tobias, Thomas Weyhermüller et Karl Wieghardt. « Mono- and dinuclear (o-thioetherphenolato)-copper(II) complexes. Structural models for galactose oxidase ». Inorganica Chimica Acta 331, no 1 (mars 2002) : 81–89. http://dx.doi.org/10.1016/s0020-1693(01)00756-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Shi, Huatian, et Yegao Yin. « Catalytic performance and mechanism of Cu(II)-hydrazone complexes as models of galactose oxidase ». Inorganica Chimica Acta 421 (septembre 2014) : 446–50. http://dx.doi.org/10.1016/j.ica.2014.06.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

LI, Chunmin, Nobuko KANEHISA, Yasushi KAI, Shinobu ITOH, Akihiro FURUTA, Toshihiko KONDO, Mitsuo KOMATSU et Yoshiki OHSHIRO. « Synthesis and structural properties of copper complexes toward the active center model of galactose oxidase ». Nihon Kessho Gakkaishi 36, Supplement (1994) : 166. http://dx.doi.org/10.5940/jcrsj.36.supplement_166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zurita, Dacil, Corinne Scheer, Jean-Louis Pierre et Eric Saint-Aman. « Solution studies of copper(II) complexes as models for the active site in galactose oxidase ». Journal of the Chemical Society, Dalton Transactions, no 23 (1996) : 4331. http://dx.doi.org/10.1039/dt9960004331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lanza, Valeria, et Graziella Vecchio. « New Glycosalen–Manganese(III) Complexes and RCA120 Hybrid Systems as Superoxide Dismutase/Catalase Mimetics ». Biomimetics 8, no 5 (21 septembre 2023) : 447. http://dx.doi.org/10.3390/biomimetics8050447.

Texte intégral
Résumé :
Reactive oxygen species are implicated in several human diseases, including neurodegenerative disorders, cardiovascular dysfunction, inflammation, hereditary diseases, and ageing. MnIII–salen complexes are superoxide dismutase (SOD) and catalase (CAT) mimetics, which have shown beneficial effects in various models for oxidative stress. These properties make them well-suited as potential therapeutic agents for oxidative stress diseases. Here, we report the synthesis of the novel glycoconjugates of salen complex, EUK-108, with glucose and galactose. We found that the complexes showed a SOD-like activity higher than EUK-108, as well as peroxidase and catalase activities. We also investigated the conjugate activities in the presence of Ricinus communis agglutinin (RCA120) lectin. The hybrid protein–galactose–EUK-108 system showed an increased SOD-like activity similar to the native SOD1.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Dimeska, Roza, Jan Wikaira, Garry M. Mockler et Ray J. Butcher. « The crystal and molecular structures of three copper-containing complexes and their activities in mimicking galactose oxidase ». Acta Crystallographica Section C Structural Chemistry 75, no 5 (10 avril 2019) : 538–44. http://dx.doi.org/10.1107/s2053229619003267.

Texte intégral
Résumé :
The structures of three copper-containing complexes, namely (benzoato-κ2 O,O′)[(E)-2-({[2-(diethylamino)ethyl]imino}methyl)phenolato-κ3 N,N′,O]copper(II) dihydrate, [Cu(C7H5O2)(C13H19N2O)]·2H2O, 1, [(E)-2-({[2-(diethylamino)ethyl]imino}methyl)phenolato-κ3 N,N′,O](2-phenylacetato-κ2 O,O′)copper(II), [Cu(C8H7O2)(C13H19N2O)], 2, and bis[μ-(E)-2-({[3-(diethylamino)propyl]imino}methyl)phenolato]-κ4 N,N′,O:O;κ4 O:N,N′,O-(μ-2-methylbenzoato-κ2 O:O′)copper(II) perchlorate, [Cu2(C8H7O2)(C12H17N2O)2]ClO4, 3, have been reported and all have been tested for their activity in the oxidation of D-galactose. The results suggest that, unlike the enzyme galactose oxidase, due to the precipitation of Cu2O, this reaction is not catalytic as would have been expected. The structures of 1 and 2 are monomeric, while 3 consists of a dimeric cation and a perchlorate anion [which is disordered over two orientations, with occupancies of 0.64 (4) and 0.36 (4)]. In all three structures, the central Cu atom is five-coordinated in a distorted square-pyramidal arrangment (τ parameter of 0.0932 for 1, 0.0888 for 2, and 0.142 and 0.248 for the two Cu centers in 3). In each species, the environment about the Cu atom is such that the vacant sixth position is open, with very little steric crowding.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Pratt, Russell C., Christopher T. Lyons, Erik C. Wasinger et T. Daniel P. Stack. « Electrochemical and Spectroscopic Effects of Mixed Substituents in Bis(phenolate)–Copper(II) Galactose Oxidase Model Complexes ». Journal of the American Chemical Society 134, no 17 (23 avril 2012) : 7367–77. http://dx.doi.org/10.1021/ja211247f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Taki, Masayasu, Haruna Hattori, Takao Osako, Shigenori Nagatomo, Motoo Shiro, Teizo Kitagawa et Shinobu Itoh. « Model complexes of the active site of galactose oxidase. Effects of the metal ion binding sites ». Inorganica Chimica Acta 357, no 11 (août 2004) : 3369–81. http://dx.doi.org/10.1016/j.ica.2004.04.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Lyons, Christopher T., et T. Daniel P. Stack. « Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models ». Coordination Chemistry Reviews 257, no 2 (janvier 2013) : 528–40. http://dx.doi.org/10.1016/j.ccr.2012.06.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Itoh, Shinobu, Masayasu Taki, Hideyuki Kumei, Shigehisa Takayama, Shigenori Nagatomo, Teizo Kitagawa, Norio Sakurada, Ryuichi Arakawa et Shunichi Fukuzumi. « Model Complexes for the Active Form of Galactose Oxidase. Physicochemical Properties of Cu(II)− and Zn(II)−Phenoxyl Radical Complexes ». Inorganic Chemistry 39, no 16 (août 2000) : 3708–11. http://dx.doi.org/10.1021/ic9910211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sarkar, Nandita, Klaus Harms, Antonio Frontera et Shouvik Chattopadhyay. « Importance of C–H⋯π interactions in stabilizing the syn/anti arrangement of pendant alkoxy side arms in two manganese(iv) Schiff base complexes : exploration of catechol oxidase and phenoxazinone synthase like activities ». New Journal of Chemistry 41, no 16 (2017) : 8053–65. http://dx.doi.org/10.1039/c7nj00766c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Adams, Harry, Neil A. Bailey, Cecilia O. Rodriguez de Barbarin, David E. Fenton et Qing-Yu He. « Heteroleptic tripodal complexes of copper(II) : towards a synthetic model for the active site in galactose oxidase ». Journal of the Chemical Society, Dalton Transactions, no 14 (1995) : 2323. http://dx.doi.org/10.1039/dt9950002323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Saysell, Colin G., Christopher D. Borman, Andrew J. Baron, Michael J. McPherson et A. Geoffrey Sykes. « Kinetic Studies on the Redox Interconversion of GOasesemiand GOaseoxForms of Galactose Oxidase with Inorganic Complexes as Redox Partners ». Inorganic Chemistry 36, no 20 (septembre 1997) : 4520–25. http://dx.doi.org/10.1021/ic970255m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shimazaki, Yuichi, Stefan Huth, Shun Hirota et Osamu Yamauchi. « Studies on galactose oxidase active site model complexes : effects of ring substituents on Cu(II)-phenoxyl radical formation ». Inorganica Chimica Acta 331, no 1 (mars 2002) : 168–77. http://dx.doi.org/10.1016/s0020-1693(01)00781-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Shimazaki, Yuichi. « Properties of the one-electron oxidized copper(II) salen-type complexes : relationship between electronic structures and reactivities ». Pure and Applied Chemistry 86, no 2 (1 février 2014) : 163–72. http://dx.doi.org/10.1515/pac-2014-5022.

Texte intégral
Résumé :
Abstract The Cu(II)-phenoxyl radical formed during the catalytic cycle of galactose oxidase (GO) attracted much attention, and the structures and properties of a number of metal-phenoxyl radical complexes have been studied. Some of the functional model systems of GO reported previously have shown that the Cu complexes oxidize primary alcohols to aldehydes and that the Cu(II)-phenoxyl radical species is formed in the catalytic cycle. Many Cu(II)-phenoxyl radical species have been produced by one-electron oxidation of the Cu(II)-phenolate complexes. On the other hand, one-electron oxidation of a Cu(II)-phenolate complex has the possibility to give different electronic structures, one of which is the Cu(III)-phenolate. From these points of view, this micro review is focused on the one-electron oxidized square-planar Cu(II) complexes of the salen-type ligands. Introduction of substituents into the phenolate moieties and conversion from a 5- to a 6-membered chelate backbone alter the electronic structure of the one-electron oxidized Cu(II) complexes and give rise to a different reactivity of benzyl alcohol oxidation. The relationship between the electronic structure and the reactivity is herein discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ahamad, M. Naqi, Manjeet Kumar, Azaj Ansari, Mantasha I., Musheer Ahmad et M. Shahid. « Synthesis, characterization, theoretical studies and catecholase like activities of [MO6] type complexes ». New Journal of Chemistry 43, no 35 (2019) : 14074–83. http://dx.doi.org/10.1039/c9nj03729b.

Texte intégral
Résumé :
Co(ii) and Zn(ii) complexes are prepared and characterized through spectral, crystallographic and theoretical studies. The Co(ii) complex is shown to be a catechol oxidase mimic and the activity is corroborated by DFT results.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Auernik, Kathryne S., et Robert M. Kelly. « Identification of Components of Electron Transport Chains in the Extremely Thermoacidophilic Crenarchaeon Metallosphaera sedula through Iron and Sulfur Compound Oxidation Transcriptomes ». Applied and Environmental Microbiology 74, no 24 (17 octobre 2008) : 7723–32. http://dx.doi.org/10.1128/aem.01545-08.

Texte intégral
Résumé :
ABSTRACT The crenarchaeal order Sulfolobales collectively contain at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pumps for maintaining intracellular pH and generating proton motive force, their contribution to sulfur and iron biooxidation has not been considered. For M. sedula growing in the presence of ferrous iron and reduced inorganic sulfur compounds (RISCs), global transcriptional analysis was used to track the response of specific genes associated with these complexes, as well as other known and putative respiratory electron transport chain elements. Open reading frames from all five terminal oxidase or bc 1-like complexes were stimulated on one or more conditions tested. Components of the fox (Msed0467 to Msed0489) and soxNL-cbsABA (Msed0500 to Msed0505) terminal/quinol oxidase clusters were triggered by ferrous iron, while the soxABCDD′ terminal oxidase cluster (Msed0285 to Msed0291) were induced by tetrathionate and S0. Chemolithotrophic electron transport elements, including a putative tetrathionate hydrolase (Msed0804), a novel polysulfide/sulfur/dimethyl sulfoxide reductase-like complex (Msed0812 to Msed0818), and a novel heterodisulfide reductase-like complex (Msed1542 to Msed1550), were also stimulated by RISCs. Furthermore, several hypothetical proteins were found to have strong responses to ferrous iron or RISCs, suggesting additional candidates in iron or sulfur oxidation-related pathways. From this analysis, a comprehensive model for electron transport in M. sedula could be proposed as the basis for examining specific details of iron and sulfur oxidation in this bioleaching archaeon.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Romanowski, Stela Maris de M., Francielen Tormena, Viviane A. dos Santos, Monique de F. Hermann et Antonio S. Mangrich. « Solution studies of copper(II) complexes as a contribution to the study of the active site of galactose oxidase ». Journal of the Brazilian Chemical Society 15, no 6 (décembre 2004) : 897–903. http://dx.doi.org/10.1590/s0103-50532004000600017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jazdzewski, Brian A., Anne M. Reynolds, Patrick L. Holland, Victor G. Young, Susan Kaderli, Andreas D. Zuberbühler et William B. Tolman. « Copper(I)-phenolate complexes as models of the reduced active site of galactose oxidase : synthesis, characterization, and O2 reactivity ». JBIC Journal of Biological Inorganic Chemistry 8, no 4 (18 février 2003) : 381–93. http://dx.doi.org/10.1007/s00775-002-0420-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Liman, Recep, Paul D. Facey, Geertje van Keulen, Paul J. Dyson et Ricardo Del Sol. « A Laterally Acquired Galactose Oxidase-Like Gene Is Required for Aerial Development during Osmotic Stress in Streptomyces coelicolor ». PLoS ONE 8, no 1 (11 janvier 2013) : e54112. http://dx.doi.org/10.1371/journal.pone.0054112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Alaji, Zahra, Elham Safaei, Hong Yi, Hengjiang Cong, Andrzej Wojtczak et Aiwen Lei. « Redox active ligand and metal cooperation for C(sp2)–H oxidation : extension of the galactose oxidase mechanism in water-mediated amide formation ». Dalton Transactions 47, no 43 (2018) : 15293–97. http://dx.doi.org/10.1039/c8dt03477j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Clark, Kimber, James E. Penner-Hahn, Mei M. Whittaker et James W. Whittaker. « Oxidation-state assignments for galactose oxidase complexes from x-ray absorption spectroscopy. Evidence for copper(II) in the active enzyme ». Journal of the American Chemical Society 112, no 17 (août 1990) : 6433–34. http://dx.doi.org/10.1021/ja00173a061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Taki, Masayasu, Hideyuki Kumei, Shinobu Itoh* et Shunichi Fukuzumi*. « Hydrogen atom abstraction by Cu(II)- and Zn(II)-phenoxyl radical complexes, models for the active form of galactose oxidase ». Journal of Inorganic Biochemistry 78, no 1 (janvier 2000) : 1–5. http://dx.doi.org/10.1016/s0162-0134(99)00198-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Vaidyanathan, Mathrubootham, et Mallayan Palaniandavar. « Models for the active site in galactose oxidase : Structure, spectra and redox of copper(II) complexes of certain phenolate ligands ». Journal of Chemical Sciences 112, no 3 (juin 2000) : 223–38. http://dx.doi.org/10.1007/bf02706175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Anjos, Ademir dos, Adailton J. Bortoluzzi, Renata E. H. M. B. Osório, Rosely A. Peralta, Geraldo R. Friedermann, Antonio S. Mangrich et Ademir Neves. « New mononuclear CuII and ZnII complexes capable of stabilizing phenoxyl radicals as models for the active form of galactose oxidase ». Inorganic Chemistry Communications 8, no 3 (mars 2005) : 249–53. http://dx.doi.org/10.1016/j.inoche.2004.12.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Orio, Maylis, Olivier Jarjayes, Hussein Kanso, Christian Philouze, Frank Neese et Fabrice Thomas. « X-Ray Structures of Copper(II) and Nickel(II) Radical Salen Complexes : The Preference of Galactose Oxidase for Copper(II) ». Angewandte Chemie International Edition 49, no 29 (23 avril 2010) : 4989–92. http://dx.doi.org/10.1002/anie.201001040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Orio, Maylis, Olivier Jarjayes, Hussein Kanso, Christian Philouze, Frank Neese et Fabrice Thomas. « X-Ray Structures of Copper(II) and Nickel(II) Radical Salen Complexes : The Preference of Galactose Oxidase for Copper(II) ». Angewandte Chemie 122, no 29 (23 avril 2010) : 5109–12. http://dx.doi.org/10.1002/ange.201001040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

KERN, Renée, Abderrahim MALKI, Arne HOLMGREN et Gilbert RICHARME. « Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase ». Biochemical Journal 371, no 3 (1 mai 2003) : 965–72. http://dx.doi.org/10.1042/bj20030093.

Texte intégral
Résumé :
Thioredoxin, thioredoxin reductase and NADPH form the thioredoxin system and are the major cellular protein disulphide reductase. We report here that Escherichia coli thioredoxin and thioredoxin reductase interact with unfolded and denatured proteins, in a manner similar to that of molecular chaperones that are involved in protein folding and protein renaturation after stress. Thioredoxin and/or thioredoxin reductase promote the functional folding of citrate synthase and α-glucosidase after urea denaturation. They also promote the functional folding of the bacterial galactose receptor, a protein without any cysteines. Furthermore, redox cycling of thioredoxin/thioredoxin reductase in the presence of NADPH and cystine stimulates the renaturation of the galactose receptor, suggesting that the thioredoxin system functions like a redox-powered chaperone machine. Thioredoxin reductase prevents the aggregation of citrate synthase under heat-shock conditions. It forms complexes that are more stable than those formed by thioredoxin with several unfolded proteins such as reduced carboxymethyl α-lactalbumin and unfolded bovine pancreatic trypsin inhibitor. These results suggest that the thioredoxin system, in addition to its protein disulphide isomerase activity possesses chaperone-like properties, and that its thioredoxin reductase component plays a major role in this function.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Krichevsky, Alexander, Stanislav V. Kozlovsky, Helen Gutgarts et Vitaly Citovsky. « Arabidopsis Co-Repressor Complexes Containing Polyamine Oxidase-Like Proteins and Plant-Specific Histone Methyltransferases ». Plant Signaling & ; Behavior 2, no 3 (mai 2007) : 174–77. http://dx.doi.org/10.4161/psb.2.3.3726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Barrio, Daniel A., Elizabeth R. Cattáneo, María C. Apezteguía et Susana B. Etcheverry. « Vanadyl(IV) complexes with saccharides. Bioactivity in osteoblast-like cells in cultureThis paper is one of a selection of papers published in this Special issue, enititled Second Messengers and Phosphoproteins—12th International Conference. » Canadian Journal of Physiology and Pharmacology 84, no 7 (juillet 2006) : 765–75. http://dx.doi.org/10.1139/y06-021.

Texte intégral
Résumé :
Complexes of vanadyl(IV) with 4 monosaccharides and 5 disaccharides were tested in 2 osteoblast-like cell lines (MC3T3E1 and UMR106). Many complexes caused stimulation of UMR106 proliferation (120% basal) in the range of 2.5 to 25 µmol/L. In the nontransformed osteoblasts, some vanadyl–saccharide complexes stimulated the mitogenesis (115% basal) in the same range of concentration. The glucose and sucrose complexes were the most efficient inhibitory agents (65% and 88% of inhibition vs. basal, respectively) for tumoral cells at 100 µmol/L. The galactose and turanose complexes exerted a similar effect in the nontransformed osteoblasts. On the other hand, all the complexes promoted the phosphorylation of the extracellular regulated kinases (ERKs). All together, these results indicate that the stimulation of ERKs is not the only factor that plays a role in the proliferative effects of vanadium derivatives since some compounds were inhibitory proliferating agents. Cell differentiation was evaluated by alkaline phosphatase specific activity and collagen synthesis in UMR106 cells. All the complexes inhibited alkaline phosphatase activity, with galactose complex as the most effective compound (IC50 = 43 µmol/L). The complex with the trehalose TreVO was the most effective agent to stimulate collagen synthesis (142% basal) and glucose consumption (132% basal). A cytosolic tyrosine protein kinase and the kinase-3 of glycogen synthase seem to be involved in the stimulation of glucose consumption by vanadium derivatives. In this series, only TreVO gathered the characteristics of a good insulin mimetic and osteogenic drug. In addition, this complex was a good promoting agent of nontransformed osteoblast proliferation, whereas it inhibited tumoral osteoblasts. GluVO, the complex with glucose, was also more toxic for tumoral than for nontransformed cells. These 2 vanadium derivatives are good potential antitumoral drugs. All the results suggest that the biological effects of vanadium compounds are a complex phenomenon influenced by the complexation, the dose, and the nature of the ligands and the cells.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Singha Mahapatra, Tufan, Dipmalya Basak, Santanu Chand, Jeff Lengyel, Michael Shatruk, Valerio Bertolasi et Debashis Ray. « Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes : synthesis, magnetic properties and catechol oxidase activity ». Dalton Transactions 45, no 34 (2016) : 13576–89. http://dx.doi.org/10.1039/c6dt02494g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Itoh, Shinobu, Masayasu Taki, Shigehisa Takayama, Shigenori Nagatomo, Teizo Kitagawa, Norio Sakurada, Ryuichi Arakawa et Shunichi Fukuzumi. « Oxidation of Benzyl Alcohol with CuII and ZnII Complexes of the Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase ». Angewandte Chemie International Edition 38, no 18 (17 septembre 1999) : 2774–76. http://dx.doi.org/10.1002/(sici)1521-3773(19990917)38:18<2774 ::aid-anie2774>3.0.co;2-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Vaidyanathan, Mathrubootham, Mallayan Palaniandavar et R. Srinivasa Gopalan. « Copper(II) complexes of sterically hindered phenolate ligands as structural models for the active site in galactose oxidase and glyoxal oxidase : X-ray crystal structure and spectral and redox properties ». Inorganica Chimica Acta 324, no 1-2 (novembre 2001) : 241–51. http://dx.doi.org/10.1016/s0020-1693(01)00606-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Matyuska, Ferenc, Nóra V. May, Attila Bényei et Tamás Gajda. « Control of structure, stability and catechol oxidase activity of copper(ii) complexes by the denticity of tripodal platforms ». New Journal of Chemistry 41, no 20 (2017) : 11647–60. http://dx.doi.org/10.1039/c7nj02013a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yamato, Kazuhiro, Takanori Inada, Matsumi Doe, Akio Ichimura, Takeji Takui, Yoshitane Kojima, Toshimitsu Kikunaga et al. « Preparations and Characterizations of NovelN,N′-Ethylene-Bridged-(S)-Histidyl-(S)-Tyrosine Derivatives and Their Copper(II) Complexes as Models of Galactose Oxidase ». Bulletin of the Chemical Society of Japan 73, no 4 (avril 2000) : 903–12. http://dx.doi.org/10.1246/bcsj.73.903.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Takahashi, Shinichiro, Shigeru Taketani, Jun-etsu Akasaka, Akira Kobayashi, Norio Hayashi, Masayuki Yamamoto et Tadashi Nagai. « Differential Regulation of Coproporphyrinogen Oxidase Gene Between Erythroid and Nonerythroid Cells ». Blood 92, no 9 (1 novembre 1998) : 3436–44. http://dx.doi.org/10.1182/blood.v92.9.3436.

Texte intégral
Résumé :
Abstract Coproporphyrinogen oxidase (CPO) catalyzes the sixth step of the heme biosynthetic pathway. To assess the tissue-specific regulation of the CPO gene promoter, mouse genomic DNA clones for CPO were isolated. Structural analysis demonstrated that the mouse CPO gene spans approximately 11 kb and consists of seven exons, just like its human counterpart. Functional analysis of the promoter by transient transfection assays indicated that synergistic action between an SP-1–like element at −21/−12, a GATA site at −59/−54, and a novel regulatory element, CPRE (-GGACTACAG-) at −49/−41, is essential for the promoter activity in murine erythroleukemia (MEL) cells. In nonerythroid NIH3T3 cells, however, the GATA site is not required. Gel mobility shift assays demonstrated that specific DNA-protein complexes can be formed with each element, and that there are cell-specific differences in factors, which bind to the SP-1–like element between MEL and NIH3T3 cells. These results provide evidence for differential regulation of the promoter function of CPO gene between erythroid and nonerythroid cells. © 1998 by The American Society of Hematology.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Takahashi, Shinichiro, Shigeru Taketani, Jun-etsu Akasaka, Akira Kobayashi, Norio Hayashi, Masayuki Yamamoto et Tadashi Nagai. « Differential Regulation of Coproporphyrinogen Oxidase Gene Between Erythroid and Nonerythroid Cells ». Blood 92, no 9 (1 novembre 1998) : 3436–44. http://dx.doi.org/10.1182/blood.v92.9.3436.421k13_3436_3444.

Texte intégral
Résumé :
Coproporphyrinogen oxidase (CPO) catalyzes the sixth step of the heme biosynthetic pathway. To assess the tissue-specific regulation of the CPO gene promoter, mouse genomic DNA clones for CPO were isolated. Structural analysis demonstrated that the mouse CPO gene spans approximately 11 kb and consists of seven exons, just like its human counterpart. Functional analysis of the promoter by transient transfection assays indicated that synergistic action between an SP-1–like element at −21/−12, a GATA site at −59/−54, and a novel regulatory element, CPRE (-GGACTACAG-) at −49/−41, is essential for the promoter activity in murine erythroleukemia (MEL) cells. In nonerythroid NIH3T3 cells, however, the GATA site is not required. Gel mobility shift assays demonstrated that specific DNA-protein complexes can be formed with each element, and that there are cell-specific differences in factors, which bind to the SP-1–like element between MEL and NIH3T3 cells. These results provide evidence for differential regulation of the promoter function of CPO gene between erythroid and nonerythroid cells. © 1998 by The American Society of Hematology.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wu, Ru Feng, You Cheng Xu, Zhenyi Ma, Fiemu E. Nwariaku, George A. Sarosi et Lance S. Terada. « Subcellular targeting of oxidants during endothelial cell migration ». Journal of Cell Biology 171, no 5 (5 décembre 2005) : 893–904. http://dx.doi.org/10.1083/jcb.200507004.

Texte intégral
Résumé :
Endogenous oxidants participate in endothelial cell migration, suggesting that the enzymatic source of oxidants, like other proteins controlling cell migration, requires precise subcellular localization for spatial confinement of signaling effects. We found that the nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase adaptor p47phox and its binding partner TRAF4 were sequestered within nascent, focal complexlike structures in the lamellae of motile endothelial cells. TRAF4 directly associated with the focal contact scaffold Hic-5, and the knockdown of either protein, disruption of the complex, or oxidant scavenging blocked cell migration. An active mutant of TRAF4 activated the NADPH oxidase downstream of the Rho GTPases and p21-activated kinase 1 (PAK1) and oxidatively modified the focal contact phosphatase PTP-PEST. The oxidase also functioned upstream of Rac1 activation, suggesting its participation in a positive feedback loop. Active TRAF4 initiated robust membrane ruffling through Rac1, PAK1, and the oxidase, whereas the knockdown of PTP-PEST increased ruffling independent of oxidase activation. Our data suggest that TRAF4 specifies a molecular address within focal complexes that is targeted for oxidative modification during cell migration.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kustov, Andrey V., Philipp K. Morshnev, Natal’ya V. Kukushkina, Nataliya L. Smirnova, Dmitry B. Berezin, Dmitry R. Karimov, Olga V. Shukhto et al. « Solvation, Cancer Cell Photoinactivation and the Interaction of Chlorin Photosensitizers with a Potential Passive Carrier Non-Ionic Surfactant Tween 80 ». International Journal of Molecular Sciences 23, no 10 (10 mai 2022) : 5294. http://dx.doi.org/10.3390/ijms23105294.

Texte intégral
Résumé :
Cancer and drug-resistant superinfections are common and serious problems afflicting millions worldwide. Photodynamic therapy (PDT) is a successful and clinically approved modality used for the management of many neoplastic and nonmalignant diseases. The combination of the light-activated molecules, so-called photosensitizers (PSs), with an appropriate carrier, is proved to enhance PDT efficacy both in vitro and in vivo. In this paper, we focus on the solvation of several potential chlorin PSs in the 1-octanol/phosphate saline buffer biphasic system, their interaction with non-ionic surfactant Tween 80 and photoinactivation of cancer cells. The chlorin conjugates containing d-galactose and l-arginine fragments are found to have a much stronger affinity towards a lipid-like environment compared to ionic chlorins and form molecular complexes with Tween 80 micelles in water with two modes of binding. The charged macrocyclic PSs are located in the periphery of surfactant micelles near hydrophilic head groups, whereas the d-galactose and l-arginine conjugates are deeper incorporated into the micelle structure occupying positions around the first carbon atoms of the hydrophobic surfactant residue. Our results indicate that both PSs have a pronounced affinity toward the lipid-like environment, leading to their preferential binding to low-density lipoproteins. This and the conjugation of chlorin e6 with the tumor-targeting molecules are found to enhance their accumulation in cancer cells and PDT efficacy.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dancs, Ágnes, Nóra V. May, Katalin Selmeczi, Zsuzsanna Darula, Attila Szorcsik, Ferenc Matyuska, Tibor Páli et Tamás Gajda. « Tuning the coordination properties of multi-histidine peptides by using a tripodal scaffold : solution chemical study and catechol oxidase mimicking ». New Journal of Chemistry 41, no 2 (2017) : 808–23. http://dx.doi.org/10.1039/c6nj03126a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yoneda, Kazunari, Haruhiko Sakuraba, Tomohiro Araki et Toshihisa Ohshima. « Crystal Structure of Binary and Ternary Complexes of Archaeal UDP-galactose 4-Epimerase-like l-Threonine Dehydrogenase fromThermoplasma volcanium ». Journal of Biological Chemistry 287, no 16 (28 février 2012) : 12966–74. http://dx.doi.org/10.1074/jbc.m111.336958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie