Articles de revues sur le sujet « Galactic formation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Galactic formation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Galactic formation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gnedin, Nickolay Y., Michael L. Norman et Jeremiah P. Ostriker. « Formation of Galactic Bulges ». Astrophysical Journal 540, no 1 (septembre 2000) : 32–38. http://dx.doi.org/10.1086/309322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Milosavljević, Miloš, et David Merritt. « Formation of Galactic Nuclei ». Astrophysical Journal 563, no 1 (10 décembre 2001) : 34–62. http://dx.doi.org/10.1086/323830.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Peng, Chih-Han, et Ryoji Matsumoto. « Formation of Galactic Prominence in the Galactic Central Region ». Astrophysical Journal 836, no 2 (16 février 2017) : 149. http://dx.doi.org/10.3847/1538-4357/aa5be8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Larson, Richard B. « Galaxy Formation and Cluster Formation ». Symposium - International Astronomical Union 126 (1988) : 311–21. http://dx.doi.org/10.1017/s007418090004256x.

Texte intégral
Résumé :
A primary motivation for studying globular clusters is that, as the oldest known galactic fossils, they trace the earliest stages of galactic evolution; indeed, they may hold the key to understanding galaxy formation. Thus it is clearly of great importance to learn how to read the fossil record. To do this, we need to understand something about how the globular clusters themselves formed. Were they the first bound objects to form, or did they form in larger pre-existing systems of which they are just small surviving fragments? If the latter, what were the prehistoric cluster-forming systems like? And how did they manage to produce objects like globular clusters?
Styles APA, Harvard, Vancouver, ISO, etc.
5

Smilgys, Romas, et Ian A. Bonnell. « Star formation in Galactic flows ». Monthly Notices of the Royal Astronomical Society 459, no 2 (6 avril 2016) : 1985–92. http://dx.doi.org/10.1093/mnras/stw791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mo, H. J., S. Mao et S. D. M. White. « The formation of galactic discs ». Monthly Notices of the Royal Astronomical Society 295, no 2 (1 avril 1998) : 319–36. http://dx.doi.org/10.1046/j.1365-8711.1998.01227.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Maddox, John. « Rates of galactic star formation ». Nature 316, no 6031 (août 1985) : 761. http://dx.doi.org/10.1038/316761a0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kennicutt, Robert C. « Star formation on galactic scales ». Proceedings of the International Astronomical Union 2, S237 (août 2006) : 311–16. http://dx.doi.org/10.1017/s1743921307001652.

Texte intégral
Résumé :
AbstractNew multi-wavelength data on nearby galaxies are providing a much more accurate and complete observational picture of star formation on galactic scales. Here I briefly report on recent results from the Spitzer Infrared Nearby Galaxies Survey (SINGS). These provide new constraints on the frequency and lifetime of deeply obscured star-forming regions in galaxies, the measurement of dust-corrected star formation rates in galaxies, and the form of the spatially-resolved Schmidt law.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tutukov, A. V. « Star Formation in Galactic Nuclei ». Symposium - International Astronomical Union 121 (1987) : 533–35. http://dx.doi.org/10.1017/s0074180900155573.

Texte intégral
Résumé :
The star formation in galactic open clusters leads, as a rule, to a complete disruption of the latter (Tutukov, 1978) because of the shallow potential wall of these clusters. The matter of dense galactic nuclei is in deep potential walls what drastically changes the star formation regime. The numerical dynamical model of the star formation in galactic nuclei with the mass 6 109 M⊙ and the radius ~ 430pc was proposed by Loose et al (1982). It includes old and newly-formed stars, gas and dust distributed initially as in the center of our Galaxy. The model takes into account the star formation, supernova explosions, stellar winds, the turbulent motion of the gas component, non-grey radiative energy transfer, the influx of gas from old stars and from the outside. The main parameter of our model is the time of dissipation of the kinetic energy of the gas component Td. Supernova explosions are the main source of this energy. The results of numerical experiments help to point out two main regimes of the star formation in galactic nuclei: stationary and bursting. In the stationary regime the rate of the star formation is constant and it equals to the rate of the gas input. The formation of a long-living superstar is possible in this case (Krügel, Tutukov, 198b). In the bursting regime the periods of an active star formation alternate with those of almost a complete absence of the star formation. The main reason for supressing the star formation process is supernova explosions which throw the gas out of the galactic nuclei.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lerner, E. J. « Galactic model of element formation ». IEEE Transactions on Plasma Science 17, no 2 (avril 1989) : 259–63. http://dx.doi.org/10.1109/27.24633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schinnerer, Eva. « Extra-Galactic Star Formation Revealed ». Symposium - International Astronomical Union 221 (2004) : 107–17. http://dx.doi.org/10.1017/s0074180900241508.

Texte intégral
Résumé :
High angular resolution observations of nearby galaxies in the optical using ground-based and space-based telescopes have not only revealed the presence of young stellar clusters, but also allowed to study their properties in various dynamical environments. These studies have shown that young massive clusters (YMCs) have typical masses of a few 1000 M⊙ and sizes of a few parsec irrespective of their site of formation (such as bulges, spiral arms, starburst rings, or mergers). This points toward a universal formation mechanism for these stellar clusters.Observations of the dust and gas content in high redshift galaxies allows one to study the reservoir for star formation in the early universe. These studies reveal extremely high star formation rates of a few 1000 M⊙ yr−1, while the distribution of the molecular gas still seems to be comparable to what is observed in the local universe. The detection of considerable amounts of molecular gas via its CO lines in the highest redshifted QSOs known today (up to z=6.4) indicates that star formation in the early universe has already produced considerable amounts of metals.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Terlevich, Roberto. « Star Formation in Galactic Nuclei ». International Astronomical Union Colloquium 120 (1989) : 342–52. http://dx.doi.org/10.1017/s0252921100024076.

Texte intégral
Résumé :
Summary.The term AGN or Active Galactic Nucleus, although with rather ill-defined boundaries, signifies extragalactic systems with non-stellar nuclear activity. Non-stellar activity indicators are: high luminosity, presence of broad emission lines, variability, nuclear UV excess, x-ray emission, radio emission, variable polarization, jets, etc.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kauffmann, Jens. « Star Formation in the Galactic Center ». Proceedings of the International Astronomical Union 11, S322 (juillet 2016) : 75–84. http://dx.doi.org/10.1017/s1743921316012205.

Texte intégral
Résumé :
AbstractResearch on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge about the Galactic Center. Particular attention is paid to suppressed star formation in the Galactic Center and how it might result from shallow density gradients in molecular clouds.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gallagher, R., R. Maiolino, F. Belfiore, N. Drory, R. Riffel et R. A. Riffel. « Widespread star formation inside galactic outflows ». Monthly Notices of the Royal Astronomical Society 485, no 3 (28 février 2019) : 3409–29. http://dx.doi.org/10.1093/mnras/stz564.

Texte intégral
Résumé :
Abstract Several models have predicted that stars could form inside galactic outflows and that this would be a new major mode of galaxy evolution. Observations of galactic outflows have revealed that they host large amounts of dense and clumpy molecular gas, which provide conditions suitable for star formation. We have investigated the properties of the outflows in a large sample of galaxies by exploiting the integral field spectroscopic data of the large MaNGA-SDSS4 galaxy survey. We find evidence for prominent star formation occurring inside at least 30 per cent of the galactic outflows in our sample, whilst signs of star formation are seen in up to half of the outflows. We also show that even if star formation is prominent inside many other galactic outflows, this may have not been revealed as the diagnostics are easily dominated by the presence of even faint active galactic nucleus and shocks. If very massive outflows typical of distant galaxies and quasars follow the same scaling relations observed locally, then the star formation inside high-z outflows can be up to several 100 $\rm M_{\odot }~yr^{-1}$ and could contribute substantially to the early formation of the spheroidal component of galaxies. Star formation in outflows can also potentially contribute to establishing the scaling relations between black holes and their host spheroids. Moreover, supernovae exploding on large orbits can chemically enrich in situ and heat the circumgalactic and intergalactic medium. Finally, young stars ejected on large orbits may also contribute to the reionization of the Universe.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Maiolino, R., H. R. Russell, A. C. Fabian, S. Carniani, R. Gallagher, S. Cazzoli, S. Arribas et al. « Star formation inside a galactic outflow ». Nature 544, no 7649 (27 mars 2017) : 202–6. http://dx.doi.org/10.1038/nature21677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Fatuzzo, Marco, et Fulvio Melia. « Star Formation at the Galactic Center ». Publications of the Astronomical Society of the Pacific 121, no 880 (juin 2009) : 585–90. http://dx.doi.org/10.1086/603529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Machida, Mami, Ryoji Matsumoto, Satoshi Nozawa, Kunio Takahashi, Yasuo Fukui, Natsuko Kudo, Kazufumi Torii, Hiroaki Yamamoto, Motosuji Fujishita et Kohji Tomisaka. « Formation of Galactic Center Magnetic Loops ». Publications of the Astronomical Society of Japan 61, no 3 (25 juin 2009) : 411–20. http://dx.doi.org/10.1093/pasj/61.3.411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Martin, Crystal L., et Robert C. Kennicutt, Jr. « Star Formation Thresholds in Galactic Disks ». Astrophysical Journal 555, no 1 (juillet 2001) : 301–21. http://dx.doi.org/10.1086/321452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Meidt, Sharon E. « HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION ». Astrophysical Journal 818, no 1 (9 février 2016) : 69. http://dx.doi.org/10.3847/0004-637x/818/1/69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Haas, M. R., et P. Anders. « Galactic consequences of clustered star formation ». Proceedings of the International Astronomical Union 5, S266 (août 2009) : 417–20. http://dx.doi.org/10.1017/s1743921309991566.

Texte intégral
Résumé :
AbstractIf all stars form in clusters and both stars and clusters follow a power-law distribution which favours the creation of low-mass objects, the numerous low-mass clusters will be deficient in high-mass stars. Therefore, the stellar mass function integrated over the entire galaxy (the integrated galactic initial mass function; IGIMF) will be steeper at the high-mass end than the underlying stellar IMF. We show how the steepness of the IGIMF depends on the sampling method and on the assumptions made regarding the star cluster mass function. We also investigate the O-star content, integrated photometry and chemical enrichment of galaxies that result from several IGIMFs compared to more standard IMFs.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Chokshi, Arati. « Active Galactic Nuclei and Galaxy Formation ». Astrophysical Journal 491, no 1 (10 décembre 1997) : 78–85. http://dx.doi.org/10.1086/304929.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Samland, M., et G. Hensler. « The Formation of the Galactic Bulge ». Symposium - International Astronomical Union 169 (1996) : 429–30. http://dx.doi.org/10.1017/s0074180900230052.

Texte intégral
Résumé :
The question is adressed whether the problem of the stellar metallicity distribution and the dynamics of the stellar components in the bulge as found out by refined observations during recent years can be understood within the context of the evolution of the whole Galaxy. A selfconsistent galaxy model has to explain the apparent differences in the effective yields of the enrichment of bulge, disk and halo. Moreover, it has to account for the observed age-metallicity distribution of the stellar components. It appears that chemo-dynamical infall models provide a consistent description of the bulge, in particular the metallicity distribution of the K giants. It should be emphasized that simple closed-box models are not appropriate, because during the bulge formation there is infall of cloudy medium (CM), as well as outflow of hot, ionized gas ejected by supernovae type II (SNII). Therefore dynamical processes have to be taken into account. For details of the chemo-dynamical description we refer to Samland & Hensler (1994) and references therein.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tobin, William. « Star Formation at Large Galactic z ? » Symposium - International Astronomical Union 144 (1991) : 109–19. http://dx.doi.org/10.1017/s0074180900088975.

Texte intégral
Résumé :
It seems very probable that young, luminous B stars occur in the galactic halo. An origin in the disc followed by ejection may account for many of these stars; certain proposed formation-ejection mechanisms involve the infall of halo material. The kinematics and supposed locations of some halo B stars seem incompatible with an origin in the disc, suggesting that these stars may have formed in the halo.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Blumenthal, George R. « Dissipation and Formation of Galactic Halos ». Symposium - International Astronomical Union 130 (1988) : 421–25. http://dx.doi.org/10.1017/s0074180900136319.

Texte intégral
Résumé :
When protogalaxies collapse, the cooling and infall of what will become the visible galactic component affects the mass distribution of dissipationless dark matter particles which constitute the halo. For spiral galaxies, the reaction of the dissipationless halo can have a striking effect on the resulting rotation curves [1–5].
Styles APA, Harvard, Vancouver, ISO, etc.
25

Totani, Tomonori. « Galaxy Formation by Galactic Magnetic Fields ». Astrophysical Journal 517, no 2 (1 juin 1999) : L69—L72. http://dx.doi.org/10.1086/312048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Freeman, K. C. « Galactic bulges : overview ». Proceedings of the International Astronomical Union 3, S245 (juillet 2007) : 3–10. http://dx.doi.org/10.1017/s1743921308017146.

Texte intégral
Résumé :
AbstractThis overview of galactic bulges begins with a discussion of the various kinds of bulges (classical, boxy/peanut-shaped, pseudo) and their likely formation mechanisms. Other specific topics include the Galactic bar/bulge and its chemical evolution, the bulge of M31, the relation between bulges and metal-poor halos (often lumped together as spheroids), the morphology-density relation and the formation of S0 galaxies, the color-structure bimodality, and scaling laws for bulges. Finally I will briefly discuss the current difficulty of forming bulgeless disk galaxies in ΛCDM.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hobbs, Alexander, Justin Read, Chris Power et David Cole. « Thermal instabilities in cooling galactic coronae : fuelling star formation in galactic discs ». Monthly Notices of the Royal Astronomical Society 434, no 3 (27 juillet 2013) : 1849–68. http://dx.doi.org/10.1093/mnras/stt977.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Burton, Michael. « The Galactic Ecosystem ». Symposium - International Astronomical Union 213 (2004) : 123–26. http://dx.doi.org/10.1017/s007418090019312x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kurtz, Stan. « Massive Star Formation Throughout the Galactic Disk ». Proceedings of the International Astronomical Union 5, H15 (novembre 2009) : 798. http://dx.doi.org/10.1017/s1743921310011762.

Texte intégral
Résumé :
AbstractHigh-mass star formation is manifestly a phenomenon of the Galactic Plane. The process begins with pre-stellar cores, evolves to proto-stellar objects, and culminates in massive main-sequence stars. Because massive young stellar objects are deeply embedded, the radio, sub-mm, and far/mid-infrared spectral windows are the most revealing. Galactic plane surveys at these wavelengths trace hot and cold molecular gas, interstellar masers, warm dust, and ionized gas that are present during star formation.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Nguyen, Lan, et Grant Mathews. « Stochastic star formation and early galactic nucleosynthesis ». Proceedings of the International Astronomical Union 8, S292 (août 2012) : 336. http://dx.doi.org/10.1017/s1743921313001622.

Texte intégral
Résumé :
AbstractWe discuss calculations of the star formation, nucleosynthesis, and stochastic evolution of proto-galactic clouds in a galactic chemical evolution model which is motivated by cold dark matter simulations of hierarchical galaxy formation (Saleh et al. 2006; Lan et al. 2010). We utilize SN-induced and dark matter halo formation-induced star formation within a model that follows the evolution of chemical enrichment and energy input to the clouds via Type II, Ia supernovae and stellar winds.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Vorobyov, Eduard, et Christian Theis. « Structure Formation in Anisotropic Disks ». Proceedings of the International Astronomical Union 2, S235 (août 2006) : 143. http://dx.doi.org/10.1017/s1743921306005758.

Texte intégral
Résumé :
The majority of normal disk galaxies are characterized by non-axisymmetric structures like spirals or bars. These structural elements have been widely discussed in the literature as a result of gravitational instabilities which are connected to growing density waves or global instabilities of disks. A first insight into the properties of galactic discs was provided by linear stability analysis. However, a disadvantage of linear stability analysis remained its restriction to small perturbations, both in amplitude and wavelength. Thus, numerical simulations, especially hydrodynamical and stellar-hydrodynamical simulations became a primary tool for the analysis of galactic evolution.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gnedin, Oleg Y. « Modeling Formation of Globular Clusters : Beacons of Galactic Star Formation ». Proceedings of the International Astronomical Union 6, S270 (mai 2010) : 381–84. http://dx.doi.org/10.1017/s1743921311000676.

Texte intégral
Résumé :
AbstractModern hydrodynamic simulations of galaxy formation are able to predict accurately the rates and locations of the assembly of giant molecular clouds in early galaxies. These clouds could host star clusters with the masses and sizes of real globular clusters. I describe current state-of-the-art simulations aimed at understanding the origin of the cluster mass function and metallicity distribution. Metallicity bimodality of globular cluster systems appears to be a natural outcome of hierarchical formation and gradually declining fraction of cold gas in galaxies. Globular cluster formation was most prominent at redshifts z > 3, when massive star clusters may have contributed as much as 20% of all galactic star formation.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bao, Min, Yanmei Chen, Qirong Yuan, Yong Shi, Dmitry Bizyaev, Xiaoling Yu, Shuai Feng et al. « SDSS-IV MaNGA : enhanced star formation in galactic-scale outflows ». Monthly Notices of the Royal Astronomical Society 505, no 1 (29 avril 2021) : 191–99. http://dx.doi.org/10.1093/mnras/stab1201.

Texte intégral
Résumé :
ABSTRACT Using the integral field unit (IFU) data from Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we collect a sample of 36 star-forming galaxies that host galactic-scale outflows in ionized gas phase. The control sample is matched in the three-dimensional parameter space of stellar mass, star formation rate, and inclination angle. Concerning the global properties, the outflows host galaxies tend to have smaller size, more asymmetric gas disc, more active star formation in the centre, and older stellar population than the control galaxies. Comparing the stellar population properties along axes, we conclude that the star formation in the outflows host galaxies can be divided into two branches. One branch evolves following the inside-out formation scenario. The other located in the galactic centre is triggered by gas accretion or galaxy interaction, and further drives the galactic-scale outflows. Besides, the enhanced star formation and metallicity along minor axis of outflows host galaxies uncover the positive feedback and metal entrainment in the galactic-scale outflows. Observational data in different phases with higher spatial resolution are needed to reveal the influence of galactic-scale outflows on the star formation progress in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Juvela, M. « Galactic cold cores ». Proceedings of the International Astronomical Union 10, H16 (août 2012) : 577–78. http://dx.doi.org/10.1017/s1743921314012241.

Texte intégral
Résumé :
AbstractThe project Galactic Cold Cores is studying the early stages of Galactic star formation using far-infrared and sub-millimetre observations of dust emission. The Planck satellite has located many sources of cold dust emission that are likely to be pre-stellar clumps in interstellar clouds. We have mapped a sample of Planck-detected clumps with the Herschel satellite at wavelengths 100-500 μm. Herschel has confirmed the Planck detections of cold dust and have revealed a significant amount of sub-structure in the clumps. The cloud cores have colour temperatures in the range of 10–15 K. However, star formation is often already in progress with cold clumps coinciding with mid-infrared point sources. In less than half of the cases, the cloud morphology is clearly dominated by filamentary structures. The sources include both nearby isolated globules and more distant, massive clouds that may be off-the-plane counterparts of infrared dark clouds.The Herschel observations have been completed and the processed maps will be released to the community in 2013.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Sorokin, A. F., M. Y. Zakharova, A. A. Sorokin, A. M. Tsyukh et V. P. Vlasenko. « Universal script of formation of galactic subsystems ». Kosmìčna nauka ì tehnologìâ 8, no 2s (2002) : 296–303. http://dx.doi.org/10.15407/knit2002.02s.296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Bodifée, G. « Star formation regions as galactic dissipative structures ». Astrophysics and Space Science 122, no 1 (mai 1986) : 41–56. http://dx.doi.org/10.1007/bf00654379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Brasser, R., A. Higuchi et N. Kaib. « Oort cloud formation at various Galactic distances ». Astronomy and Astrophysics 516 (juin 2010) : A72. http://dx.doi.org/10.1051/0004-6361/201014275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ferreras, I., R. F. G. Wyse et J. Silk. « The formation history of the Galactic bulge ». Monthly Notices of the Royal Astronomical Society 345, no 4 (11 novembre 2003) : 1381–91. http://dx.doi.org/10.1046/j.1365-2966.2003.07056.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Calzetti, D., et R. C. Kennicutt. « The New Frontier : Galactic-Scale Star Formation ». Publications of the Astronomical Society of the Pacific 121, no 883 (septembre 2009) : 937–41. http://dx.doi.org/10.1086/605617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Loo, Sven Van, Jonathan C. Tan et Sam A. E. G. Falle. « MAGNETIC FIELDS AND GALACTIC STAR FORMATION RATES ». Astrophysical Journal 800, no 1 (10 février 2015) : L11. http://dx.doi.org/10.1088/2041-8205/800/1/l11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Minchev, I., M. Martig, D. Streich, C. Scannapieco, R. S. de Jong et M. Steinmetz. « ON THE FORMATION OF GALACTIC THICK DISKS ». Astrophysical Journal 804, no 1 (24 avril 2015) : L9. http://dx.doi.org/10.1088/2041-8205/804/1/l9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kumai, Yasuki, Yuichi Hashi et Mitsuaki Fujimoto. « Formation of Globular Clusters and Galactic Environments ». Astrophysical Journal 416 (octobre 1993) : 576. http://dx.doi.org/10.1086/173259.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Rodrigues, L. F. S., A. Shukurov, A. Fletcher et C. M. Baugh. « Galactic magnetic fields and hierarchical galaxy formation ». Monthly Notices of the Royal Astronomical Society 450, no 4 (14 mai 2015) : 3472–89. http://dx.doi.org/10.1093/mnras/stv816.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Persic, Massimo, et Yoel Rephaeli. « Probing star formation with galactic cosmic rays ». Monthly Notices of the Royal Astronomical Society 403, no 3 (11 avril 2010) : 1569–76. http://dx.doi.org/10.1111/j.1365-2966.2009.16218.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Low, Mordecai-Mark Mac, Yuexing Li et Ralf S. Klessen. « Galactic-scale star formation by gravitational instability ». Proceedings of the International Astronomical Union 2, S237 (août 2006) : 336–43. http://dx.doi.org/10.1017/s174392130700169x.

Texte intégral
Résumé :
AbstractWe present numerical experiments that demonstrate that the nonlinear development of the Toomre instability in disks of isothermal gas, stars, and dark matter reproduces the observed Schmidt Law for star formation. The rate of gas collapse depends exponentially on the (minimum) value of the Toomre parameter in the disk. We demonstrate that spurious fragmentation occurs in the absence of sufficient resolution in our SPH model. Our models also reproduce observed star formation thresholds in disk galaxies. We finally briefly discuss the application of our models to the study of globular cluster formation in merging galaxies.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dobbs, Clare. « Simulating Star Formation on a Galactic Scale ». American Scientist 102, no 2 (2014) : 132. http://dx.doi.org/10.1511/2014.107.132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Renzini, Alvio. « Stellar Dating and Formation of Galactic Spheroids ». Symposium - International Astronomical Union 164 (1995) : 325–36. http://dx.doi.org/10.1017/s0074180900108745.

Texte intégral
Résumé :
In recent years a view spread widely according to which spheroidal stellar systems are not as old as argued by Baade forty years ago and for a long time given for granted. In this – more modern view – most galactic bulges may form late, e.g. as a spontaneous corruption of disks, and most ellipticals may seemingly be late comers, perhaps the result of merging spirals.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Xu Wen et Yu Yun-qiang. « Galactic rotation and formation of black hole ». Chinese Astronomy and Astrophysics 18, no 2 (avril 1994) : 138–48. http://dx.doi.org/10.1016/0275-1062(94)90095-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Semelin, B., et F. Combes. « Galactic disc formation from cold fractal gas ». Symposium - International Astronomical Union 208 (2003) : 443–44. http://dx.doi.org/10.1017/s0074180900207675.

Texte intégral
Résumé :
It is likely that cold molecular clouds formed early, even before galaxies. In this work, we try to assess the consequences of using cold fractal gas for disc formation instead of hot gas, with a focus on angular momentum loss through dynamical friction. Using numerical simulations, we show that the dynamical friction from the dark matter halo on the cold gas fractal structures is not affected by the morphology of the structures, but is affected by their dynamical nature: their deformations and fluctuations. We argue that for typical values of the physical parameters during disc formation, the friction at small scale is reduced.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Elmegreen, B. G. « Star Formation on Galactic Scales : Empirical Laws ». EAS Publications Series 51 (2011) : 3–17. http://dx.doi.org/10.1051/eas/1151001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie