Littérature scientifique sur le sujet « GAGs, Hurler syndrome, bone marrow stromal cells, induced Pluripotent Stem Cells »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « GAGs, Hurler syndrome, bone marrow stromal cells, induced Pluripotent Stem Cells ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "GAGs, Hurler syndrome, bone marrow stromal cells, induced Pluripotent Stem Cells"

1

Tolar, Jakub, In-Hyun Park, Lily Xia, Mark Osborn, Ron T. McElmurry, Paul J. Orchard, George Q. Daley et Bruce R. Blazar. « Patient-Specific Induced Pluripotent Stem Cells in Hurler Syndrome ». Blood 112, no 11 (16 novembre 2008) : 386. http://dx.doi.org/10.1182/blood.v112.11.386.386.

Texte intégral
Résumé :
Abstract Hurler syndrome (HS; mucopolysaccharidosis type I) is caused by severe mutations in the iduronidase (IDUA) gene, leading to multi-organ system dysfunction due to the toxic accumulation of glycosaminoglycans. Although allogeneic hematopoietic cell transplantation (HCT) has been shown to provide the IDUA protein and to reverse many of the manifestations of HS, allogeneic HCT is associated with significant morbidity and mortality. We hypothesized that an advantageous alternative strategy may be to induce gene-corrected autologous pluripotent cells to become hematopoietic stem cells, which then provide the missing IDUA enzyme. Because patient-specific embryonic stem cell isolation is not practical, recent strategies have been developed that reprogram adult cells to acquire pluripotency. Such induced pluripotent stem (iPS) cells can be created from fibroblasts or mesenchymal stromal cells (MSCs). As a first step in testing of iPS cells for gene-corrected HS treatment, we isolated host MSCs from the bone chips of a 9-year-old boy with HS who had undergone spinal surgery 8 years after successful allogeneic HCT. HS-MSCs expressed no IDUA, confirming a lack of contamination from either donor-derived hematopoietic cells or MSCs. To create HS-iPS cells, HS-MSCs were transduced with viral vectors carrying reprogramming transcription factors (OCT4, SOX2, KLF4, and c-MYC) that are typically associated with pluripotency and expressed at high levels in embryonic but not adult stem cells. Transduced cells were cultured on supportive stroma of irradiated mouse embryo fibroblasts. Within several weeks, colonies of iPS cells emerged from the two-dimensional culture. When compared to MSCs, the HS-iPS cells showed persistent mRNA expression of OCT3/4 and SOX2 and transient mRNA expression of c-MYC and KLF4, which is expected to occur in the wild-type iPS cells. HS-iPS cells expressed protein markers characteristic of reprogrammed immature cells: OCT3/4, NANOG, stage-specific embryonic antigens (SSEA) 3 and 4, tumor rejection antigens (TRA) 1–60 and 1–81, and alkaline phosphatase. HS-iPS cells had normal male karyotype as determined by chromosomal G-banding. As a second step in creating gene-corrected HS-iPS cells, we employed the non-viral Sleeping Beauty (SB) transposon system (because of the less random pattern of genome integration when compared to viral vectors). Human HS-iPS cells were co-nucleofected with an SB transposon that harbored the human IDUA gene and an expression cassette of the green fluorescent protein (GFP) along with an SB transposase plasmid that provides the enzymatic machinery necessary for integration into TA dinucleotide sites within the genome. Two weeks after nucleofection 10%-15% of HS-iPS cells expressed GFP. Total glycosaminoglycans (a hallmark of the biochemical defect in HS) in unsorted cultures were decreased to wild-type levels. IDUA expression in unsorted cultures was approximately 10% of wild-type IDUA levels, which is within the range sufficient for phenotypic rescue in HS patients after allogeneic HCT. Experiments are ongoing, and data will be presented in regards to: a) map transposon insertions in the genome to prove stable transgenesis by transposition; b) characterization of the differentiation potential of the corrected HS-iPS cells into various mesodermal lineages relevant to rescue of the clinical phenotype associated with HS (hematopoietic, chondrogenic, and osteogenic); c) assessment of development and consequences of cellular pathology in numerous tissue types affected by IDUA deficiency. To our knowledge these are the first data to report that autologous iPS cells can be obtained from HS patients. In summary, HS-iPS cells present an opportunity to use the hematopoietic progeny of gene-corrected autologous cells clinically in a manner that may preclude the immunologic complications of allogeneic transplantation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pan, Chendong, Matthew S. Nelson, Morayma Reyes, Lisa Koodie, Joseph J. Brazil, Elliot J. Stephenson, Robert C. Zhao et al. « Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biologic activity of FGF-2 on human multipotent progenitor cells ». Blood 106, no 6 (15 septembre 2005) : 1956–64. http://dx.doi.org/10.1182/blood-2005-02-0657.

Texte intégral
Résumé :
Abstract In mucopolysaccharidosis-I (MPS-I), α-L-iduronidase deficiency leads to progressive heparan sulfate (HS) and dermatan sulfate (DS) glycosaminoglycan (GAG) accumulation. The functional consequences of these accumulated molecules are unknown. HS critically influences tissue morphogenesis by binding to and modulating the activity of several cytokines (eg, fibroblast growth factors [FGFs]) involved in developmental patterning. We recently isolated a multipotent progenitor cell from postnatal human bone marrow, which differentiates into cells of all 3 embryonic lineages. The availability of multipotent progenitor cells from healthy volunteers and patients with MPS-I (Hurler syndrome) provides a unique opportunity to directly examine the functional effects of abnormal HS on cytokine-mediated stem-cell proliferation and survival. We demonstrate here that abnormally sulfated HS in Hurler multipotent progenitor cells perturb critical FGF-2–FGFR1-HS interactions, resulting in defective FGF-2–induced proliferation and survival of Hurler multipotent progenitor cells. Both the mitogenic and survival-promoting activities of FGF-2 were restored by substitution of Hurler HS by normal HS. This perturbation of critical HS–cytokine receptor interactions may represent a mechanism by which accumulated HS contributes to the developmental pathophysiology of Hurler syndrome. Similar mechanisms may operate in the pathogenesis of other diseases where structurally abnormal GAGs accumulate.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jung, Moonjung, Stefan Cordes, Jizhong Zou, Shiqin J. Yu, Xavi Guitart, So Gun Hong, Vinh Dang et al. « GATA2 deficiency and human hematopoietic development modeled using induced pluripotent stem cells ». Blood Advances 2, no 23 (11 décembre 2018) : 3553–65. http://dx.doi.org/10.1182/bloodadvances.2018017137.

Texte intégral
Résumé :
Abstract GATA2 deficiency is an inherited or sporadic genetic disorder characterized by distinct cellular deficiency, bone marrow failure, various infections, lymphedema, pulmonary alveolar proteinosis, and predisposition to myeloid malignancies resulting from heterozygous loss-of-function mutations in the GATA2 gene. How heterozygous GATA2 mutations affect human hematopoietic development or cause characteristic cellular deficiency and eventual hypoplastic myelodysplastic syndrome or leukemia is not fully understood. We used induced pluripotent stem cells (iPSCs) to study hematopoietic development in the setting of GATA2 deficiency. We performed hematopoietic differentiation using iPSC derived from patients with GATA2 deficiency and examined their ability to commit to mesoderm, hemogenic endothelial precursors (HEPs), hematopoietic stem progenitor cells, and natural killer (NK) cells. Patient-derived iPSC, either derived from fibroblasts/marrow stromal cells or peripheral blood mononuclear cells, did not show significant defects in committing to mesoderm, HEP, hematopoietic stem progenitor, or NK cells. However, HEP derived from GATA2-mutant iPSC showed impaired maturation toward hematopoietic lineages. Hematopoietic differentiation was nearly abolished from homozygous GATA2 knockout (KO) iPSC lines and markedly reduced in heterozygous KO lines compared with isogenic controls. On the other hand, correction of the mutated GATA2 allele in patient-specific iPSC did not alter hematopoietic development consistently in our model. GATA2 deficiency usually manifests within the first decade of life. Newborn and infant hematopoiesis appears to be grossly intact; therefore, our iPSC model indeed may resemble the disease phenotype, suggesting that other genetic, epigenetic, or environmental factors may contribute to bone marrow failure in these patients following birth. However, heterogeneity of PSC-based models and limitations of in vitro differentiation protocol may limit the possibility to detect subtle cellular phenotypes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sidhu, Ishnoor, Sonali P. Barwe, Kristi Lynn Kiick, E. Anders Kolb et Anilkumar Gopalakrishnapillai. « Hydrogel-Based 3D Culture Model for Down Syndrome Associated Transient Myeloproliferative Disorder Using Customized Induced Pluripotent Stem Cells ». Blood 138, Supplement 1 (5 novembre 2021) : 1137. http://dx.doi.org/10.1182/blood-2021-151274.

Texte intégral
Résumé :
Abstract The generation of hematopoietic stem and progenitor cells (HSPCs) from induced pluripotent stem cells (iPSCs) provides an extraordinary tool for hematological disease modeling of rare disorders such as Down syndrome (DS) associated transient myeloproliferative disorder (TMD). TMD is a preleukemic condition observed in 10-20% of children with trisomy 21 possessing the pathognomonic mutation in the transcription factor GATA1. Hematopoiesis in the bone marrow (BM) is affected by cell-cell and cell-matrix interactions. The current methods for iPSC differentiation into HSPCs utilize either 2-dimensional (2D) monolayer of mouse stromal cells or animal tissue derived extracellular matrices. Generation of a 3-dimensional (3D) culture environment attempts to facilitate both cell-cell and cell-matrix interactions during iPSC differentiation. This study reports the development of a 3D culture system for hematopoietic differentiation of iPSCs to model TMD. iPSC colonies were encapsulated in 3D polyethylene glycol (PEG) based hydrogels containing synthetic integrin binding peptide (GRGDSPC) and enzymatically degradable peptide (GGPQGIWGQGKG) (Fig. 1A) and cultured in maintenance medium (mTeSR1™, Stem Cell Technology) without feeder cells. There were notable morphological differences between the 3D encapsulated and 2D cultured iPSC colonies (Fig. 1B). The 3D encapsulation did not have an adverse effect on the viability of the iPSC colonies evaluated by in situ staining with viability dye (Fig. 1C). The 3D encapsulated colonies were more compact with a spheroid morphology in PEG whereas colonies in 2D were more flattened (Fig. 1D). The pluripotency of the 3D encapsulated iPSCs was confirmed alkaline phosphatase staining (purple colonies) and by the presence of >96% population expressing pluripotency markers, Tra-1-60 and SSEA-4 (Fig. 1E). To test the efficiency of the 3D model system to generate HSPCs, the encapsulated iPSCs were subjected to hematopoietic differentiation using STEMdiff Hematopoietic Kit. Following differentiation, immunophenotype analysis of single cells by flow cytometry revealed a 1.7-fold higher CD34+CD45+CD38-CD45RA- cell percentage in 3D hydrogels compared to 2D. Further delineation of sub-populations in HSPC compartment from 2D and 3D hydrogel revealed a 1.9-fold and 2.1-fold higher population of early HSPCs and multipotent progenitors (MPPs) in 3D compared to 2D respectively (Fig 1F, *P<0.05). In colony forming unit (CFU) assay, the 3D generated HSPCs gave rise to a 2.0-fold higher number of CFU-GEMM (granulocyte, erythrocyte, monocyte, megakaryocyte) colonies compared to 2D, with 2.0-fold decreased number of BFU-E (erythroid) colonies and a similar number of CFU-GM (granulocyte, macrophage) colonies (Fig. 1G). Thus, the low modulus synthetic matrix promoted hematopoietic differentiation producing higher percentage of early HSPCs as compared to the 2D culture system. We used this 3D system to model TMD by utilizing isogenic iPSCs with disomy 21 (D21), trisomy 21 (T21), and trisomy 21 bearing pathologic mutation in GATA1 (T21-G1). The megakaryoid population in the HSPCs generated by hematopoietic differentiation of 3D encapsulated iPSCs was characterized by the percentage of CD34+CD41+ population within the total CD41+ population, myeloid population as CD18+CD45+ and erythroid population as CD71+CD235+. T21 HSPCs showed increased erythroid and megakaryoid populations as compared to isogenic D21, consistent with the role of trisomy 21 in perturbing hematopoiesis. T21-G1 had elevated megakaryoid (93±6% vs 71±1%,) and myeloid (32±16% vs 8±4%) populations with reduced erythroid (27±12% vs 79±6%) population as compared to T21 HSPCs implicating GATA1s in altered hematopoiesis (Fig. 1H). T21-G1 HSPCs only produced CFU-GM colonies as compared to a high number of CFU-GEMM and BFU-E in T21 and D21 HSPCs (Fig. 1I). The expression of GATA1s in T21-G1 megakaryoid population was confirmed (Fig. 1J). The immunophenotype marker analysis of T21-G1 megakaryoid blasts showed expression of megakaryoid/erythroid antigens (CD41, CD61, CD42b, CD71) along with myeloid markers (CD11b, CD33, CD13) and increased expression of CD56 and CD117 consistent with TMD patients (Fig. 1K). In conclusion, our cost-effective tunable 3D hydrogel system promoted hematopoietic differentiation of iPSCs and generated TMD model mimicking the salient features of the disease. Figure 1 Figure 1. Disclosures Barwe: Prelude Therapeutics: Research Funding. Gopalakrishnapillai: Geron: Research Funding.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yamazaki, Sho, Kazuki Taoka, Shunya Arai, Masashi Miyauchi, Keisuke Kataoka, Akihide Yoshimi et Mineo Kurokawa. « Patient-Derived Induced Pluripotent Stem Cells Identified SLITRK4 As a Causative Gene of Chronic Myelomonocytic Leukemia ». Blood 128, no 22 (2 décembre 2016) : 1134. http://dx.doi.org/10.1182/blood.v128.22.1134.1134.

Texte intégral
Résumé :
Abstract Chronic myelomonocytic leukemia (CMML), the most frequent disease entity of myelodysplastic syndrome/myeloproliferative neoplasm is a clonal hematopoietic malignancy that is characterized by persistent monocytosis, morphologic myeloid dysplasia, and progression to acute myeloid leukemia. The pathogenesis of CMML remains entirely elusive because of the lack of suitable mouse models and the difficulties in the establishment of CMML cell lines. We have previously reported that we established induced pluripotent stem cells (iPSC) from CMML CD34 positive leukemic cells (CMML-iPSC) as a new disease model. Co-cultured with C3H10T1/2 stromal cells in the presence of vascular endothelial growth factor, CMML-iPSC generated CD34 CD43 double-positive hematopoietic progenitor cells (CMML-HPC). CMML-HPC have recapitulated important disease features of parental CMML cells in terms of genetic abnormalities, acceleration of cell proliferation, and aberrant surface markers expression. In addition, a novel human CMML xenograft mouse model has been established through secondary transplantation of human HPCs from CMML-iPSC-derived teratomas. This model produced HPCs that mimicked the properties of CMML in vivo. To identify key molecular abnormalities that contribute to the pathophysiology of CMML, we conducted comprehensive gene expression and DNA methylation profiling analyses of normal and CMML parental CD34 positive cells, iPSC, and their hematopoietic progenies, respectively. Correlation analysis revealed that gene expression and DNA methylation status between normal and CMML iPSC-derived HPC exhibited similar pattern (R2 = 0.92 and 0.96, respectively), although normal and CMML parental CD34 positive cells were quite different (R2 = 0.72 and 0.90, respectively), indicating that reprogramming followed by re-differentiation may enable to obtain more homogenous population of normal and CMML cells that reside in almost the same differentiation stage. These results allowed us to determine the difference in the genetic and epigenetic status between normal and CMML iPSC-derived HPC, which remained through reprogramming and re-differentiation, in order to find out causative genes in the pathogenesis of CMML. Using these combined omics platforms, we identified SLIT and NTRK like family member 4 (SLITRK4) as a candidate gene involving in pathogenesis of CMML, whose expression was enhanced and whose promoters were hypo-methylated in CMML-HPC. In other CMML patients' CD34 positive leukemic cells, the expression of SLITRK4 was up-regulated compared to healthy CD34 positive bone marrow cells and other leukemia cells. In addition, we revealed SLITRK4 had pro-proliferative activity as the knockdown of SLITRK4 inhibited proliferation of leukemic cell lines OCI-AML3. To elucidate whether SLITRK4 exert any biological functions in CMML, we established CMML-iPSC clones harboring hetero-knockout (wt/-) or homo-knockout (-/-) of SLITRK4 gene by CRISPR/Cas9 system. Although SLITRK4 (wt/-) and (-/-) clones did not exhibit any morphological and proliferative difference in CMML-iPSC, the production of HPC from CMML-iPSC was dramatically attenuated in SLITRK4-dependent manner. Therefore, while little has been known about the roles of SLITRK molecules in tumorigenesis, we demonstrated SLITRK4 was indispensable for generation of CMML leukemic cells and suggested the possibility of novel molecular therapy targeting SLITRK4, based on the findings obtained from our combined omics platforms. In summary, we identified SLITRK4 as a novel candidate gene responsible for the pathogenesis of CMML through our combined omics platform using patient-derived iPSC. This platform may provide a potential to trace causative genes in a variety of diseases. Disclosures Kataoka: Kyowa Hakko Kirin: Honoraria; Boehringer Ingelheim: Honoraria; Yakult: Honoraria.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Saito, Kei, Tohru Fujiwara, Shunsuke Hatta, Chie Suzuki, Noriko Fukuhara, Yasushi Onishi, Yukio Nakamura et Hideo Harigae. « Generation and Molecular Characterization of Human Ring Sideroblasts ». Blood 132, Supplement 1 (29 novembre 2018) : 3613. http://dx.doi.org/10.1182/blood-2018-99-111066.

Texte intégral
Résumé :
Abstract (Background) Sideroblastic anemias are heterogeneous congenital and acquired refractory anemias characterized by bone marrow ring sideroblasts, reflecting excess mitochondrial iron deposition. While the disease is commonly associated with myelodysplastic syndrome, the congenital forms of sideroblastic anemias comprise a diverse class of syndromic and non-syndromic disorders, which are caused by the germline mutation of genes involved in iron-heme metabolism in erythroid cells. Although the only consistent feature of sideroblastic anemia is the bone marrow ring sideroblasts, evidence on the detailed molecular characteristics of ring sideroblasts is scarce owing to a lack of the biological models. We have recently established ring sideroblasts by inducing ALAS2 gene mutation based on human-induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells (ASH 2017) and have further extended the molecular characterization of human ring sideroblasts to gain new biological insights. (Method) We targeted the GATA-1-binding region of intron 1 of the human ALAS2 gene in HiDEP cells and established two independent clones [X-linked sideroblastic anemia (XLSA) clones]. A co-culture with OP9 stromal cells (ATCC) was conducted with IMDM medium supplemented with FBS, erythropoietin, dexamethasone, MTG, insulin-transferrin-selenium, and ascorbic acid. To obtain human primary erythroblasts, CD34-positive cells isolated from cord blood were induced in a liquid suspension culture (Fujiwara et al. JBC 2014). Bone marrow glycophorin A (GPA)-positive erythroblasts of patients with XLSA and normal individuals were separated using the MACS system (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) after obtaining written informed consent. For transcription profiling, Human Oligo chip 25K (Toray) was used. (Results) We previously demonstrated that co-culture with OP9 cells in the medium supplemented with 100 uM sodium ferrous citrate (SFC) promoted erythroid differentiation of XLSA clones, which enabled the establishment of ring sideroblasts (ASH 2017). To confirm the importance of SFC in terminal erythroid differentiation, we further demonstrated that the addition of SFC, and not transferrin-loaded iron, induced the frequency of GPA+ cells and TfR1-GPA+ mature erythroid population, based on primary erythroblasts derived from human CD34-positive cells. Subsequently, to reveal the molecular mechanism by which abnormal iron mitochondrial iron accumulation occurs by co-culture with SFC, we evaluated the expressions of various metal transporters, demonstrating that the addition of SFC significantly increased the expressions of mitoferrin 1 (MFRN1; a ferrous iron transporter in mitochondria), divalent metal transporter 1 (DMT1), and Zrt- and Irt-like protein 8 (ZIP8; a transmembrane zinc transporter, recently known as a ferrous iron transporter) in the XLSA clone than the wild-type cells, which would have contributed to the formation of ring sideroblasts. Moreover, we performed expression analyses to elucidate the biochemical characteristics of ring sideroblasts. After co-culture with OP9 in the presence of SFC, ring sideroblasts exhibited more than two-fold upregulation and downregulation of 287 and 143 genes, respectively, than the wild-type cells. Interestingly, when compared with the expression profiling results before co-culture (ASH 2017), we noticed prominent upregulation of gene involved in anti-apoptotic process (p = 0.000772), including HSPA1A, superoxide dismutase (SOD) 1, and SOD2. In addition, we conducted a microarray analysis based on GPA-positive erythroblasts from an XLSA patient and a normal individual. The analysis revealed significant upregulation of genes involved in the apoptosis process, as represented by apoptosis enhancing nuclease, DEAD-box helicase 47, and growth arrest and DNA-damage-inducible 45 alpha, and anti-apoptotic genes, such as HSPA1A and SOD2. Concomitantly, when the XLSA clone was co-cultured with OP9 in the presence of SFC, the apoptotic cell frequency as well as DNA fragmentation were significantly reduced compared with the XLSA clone co-cultured without SFC, indicating that ring sideroblasts avoid cell death by inducing anti-apoptotic properties. (Conclusion) Further characterization of the XLSA model would help clarify its molecular etiology as well as establish novel therapeutic strategies. Disclosures Fukuhara: Celgene: Research Funding; Chugai: Research Funding; Daiichi-Sankyo: Research Funding; Boehringer Ingelheim: Research Funding; Eisai: Honoraria, Research Funding; GlaxoSmithKline: Research Funding; Janssen: Honoraria, Research Funding; Japan Blood Products Organization: Research Funding; Kyowa Hakko Kirin: Honoraria, Research Funding; Mitsubishi Tanabe: Research Funding; Mundipharma: Honoraria, Research Funding; MSD: Research Funding; Nippon-shinyaku: Research Funding; Novartis pharma: Research Funding; Ono: Honoraria, Research Funding; Otsuka Pharmaceutical: Research Funding; Pfizer: Research Funding; Sanofi: Research Funding; Symbio: Research Funding; Solasia: Research Funding; Sumitomo Dainippon: Research Funding; Taiho: Research Funding; Teijin Pharma: Research Funding; Zenyaku Kogyo: Honoraria, Research Funding; Takeda: Honoraria; Baxalta: Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Bayer Yakuhin: Research Funding; Alexionpharma: Research Funding; AbbVie: Research Funding; Astellas: Research Funding; Nihon Ultmarc: Research Funding.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Andre, E., E. Yaniz-Galende, C. Hamilton, G. J. Dusting, N. Hellen, CE Poulet, M. Diez Cunado et al. « Poster session 1Cell growth, differentiation and stem cells - Heart72Understanding the metabolism of cardiac progenitor cells : a first step towards controlling their proliferation and differentiation?73Expression of pw1/peg3 identifies a new cardiac adult stem cell population involved in post-myocardial infarction remodeling74Long-term stimulation of iPS-derived cardiomyocytes using optogenetic techniques to promote phenotypic changes in E-C coupling75Benefits of electrical stimulation on differentiation and maturation of cardiomyocytes from human induced pluripotent stem cells76Constitutive beta-adrenoceptor-mediated cAMP production controls spontaneous automaticity of human induced pluripotent stem cell-derived cardiomyocytes77Formation and stability of T-tubules in cardiomyocytes78Identification of miRNAs promoting human cardiomyocyte proliferation by regulating Hippo pathway79A direct comparison of foetal to adult epicardial cell activation reveals distinct differences relevant for the post-injury response80Role of neuropilins in zebrafish heart regeneration81Highly efficient immunomagnetic purification of cardiomyocytes derived from human pluripotent stem cells82Cardiac progenitor cells posses a molecular circadian clock and display large 24-hour oscillations in proliferation and stress tolerance83Influence of sirolimus and everolimus on bone marrow-derived mesenchymal stem cell biology84Endoglin is important for epicardial behaviour following cardiac injuryCell death and apoptosis - Heart87Ultrastructural alterations reflecting Ca2+ handling and cell-to-cell coupling disorders precede occurrence of severe arrhythmias in intact animal heart88Urocortin-1 promotes cardioprotection through ERK1/2 and EPAC pathways : role in apoptosis and necrosis89Expression p38 MAPK and Cas-3 in myocardium LV of rats with experimental heart failure at melatonin and enalapril introductionTranscriptional control and RNA species - Heart92Accumulation of beta-amyloid 1-40 in HF patients : the role of lncRNA BACE1-AS93Role of miR-182 in zebrafish and mouse models of Holt-Oram syndrome94Mir-27 distinctly regulates muscle-enriched transcription factors and growth factors in cardiac and skeletal muscle cells95AF risk factors impair PITX2 expression leading to Wnt-microRNA-ion channel remodelingCytokines and cellular inflammation - Heart98Post-infarct survival depends on the interplay of monocytes, neutrophils and interferon gamma in a mouse model of myocardial Infarction99Inflammatory cd11b/c cells play a protective role in compensated cardiac hypertrophy by promoting an orai3-related pro-survival signal100Anti-inflammatory effects of endothelin receptor blockade in the atrial tissue of spontaneously hypertensive rats101Mesenchymal stromal cells reduce NLRP3 inflammasome activity in Coxsackievirus B3-induced myocarditis102Mesenchymal stromal cells modulate monocytes trafficking in Coxsackievirus B3-induced myocarditis103The impact of regulatory T lymphocytes on long-term mortality in patients with chronic heart failure104Temporal dynamics of dendritic cells after ST-elevation myocardial infarction relate with improvement of myocardial functionGrowth factors and neurohormones - Heart107Preconditioning of hypertrophied heart : miR-1 and IGF-1 crosstalk108Modulation of catecholamine secretion from human adrenal chromaffin cells by manipulation of G protein-coupled receptor kinase-2 activity109Evaluation of cyclic adenosin-3,5- monophosphate and neurohormones in patients with chronic heart failureNitric oxide and reactive oxygen species - Heart112Hydrogen sulfide donor inhibits oxidative and nitrosative stress, cardiohemodynamics disturbances and restores cNOS coupling in old rats113Role and mechanisms of action of aldehydes produced by monoamine oxidase A in cardiomyocyte death and heart failure114Exercise training has contrasting effects in myocardial infarction and pressure-overload due to different endothelial nitric oxide synthase regulation115S-Nitroso Human Serum Albumin dose-dependently leads to vasodilation and alters reactive hyperaemia in coronary arteries of an isolated mouse heart model116Modulating endothelial nitric oxide synthase with folic acid attenuates doxorubicin-induced cardiomyopathy119Effects of long-term very high intensity exercise on aortic structure and function in an animal model120Electron paramagnetic resonance spectroscopy quantification of nitrosylated hemoglobin (HbNO) as an index of vascular nitric oxide bioavailability in vivo121Deletion of repressor activator protein 1 impairs acetylcholine-induced relaxation due to production of reactive oxygen speciesExtracellular matrix and fibrosis - Heart124MicroRNA-19b is associated with myocardial collagen cross-linking in patients with severe aortic stenosis. Potential usefulness as a circulating biomarker125A new ex vivo model to study cardiac fibrosis126Heterogeneity of fibrosis and fibroblast differentiation in the left ventricle after myocardial infarction127Effect of carbohydrate metabolism degree compensation to the level of galectin-3 changes in hypertensive patients with chronic heart failure and type 2 diabetes mellitus128Statin paradox in association with calcification of bicuspid aortic valve interstitial cells129Cardiac function remains impaired despite reversible cardiac fibrosis after healed experimental viral myocarditisIon channels, ion exchangers and cellular electrophysiology - Heart132Identifying a novel role for PMCA1 (Atp2b1) in heart rhythm instability133Mutations of the caveolin-3 gene as a predisposing factor for cardiac arrhythmias134The human sinoatrial node action potential : time for a computational model135iPSC-derived cardiomyocytes as a model to dissect ion current alterations of genetic atrial fibrillation136Postextrasystolic potentiation in healthy and diseased hearts : effects of the site of origin and coupling interval of the preceding extrasystole137Absence of Nav1.8-based (late) sodium current in rabbit cardiomyocytes and human iPSC-CMs138hiPSC-derived cardiomyocytes from Brugada Syndrome patients without identified mutations do not exhibit cellular electrophysiological abnormalitiesMicrocirculation141Atherogenic indices, collagen type IV turnover and the development of microvascular complications- study in diabetics with arterial hypertension142Changes in the microvasculature and blood viscosity in women with rheumatoid arthritis, hypercholesterolemia and hypertensionAtherosclerosis145Shear stress regulates endothelial autophagy : consequences on endothelial senescence and atherogenesis146Obstructive sleep apnea causes aortic remodeling in a chronic murine model147Aortic perivascular adipose tissue displays an aged phenotype in early and late atherosclerosis in ApoE-/- mice148A systematic evaluation of the cellular innate immune response during the process of human atherosclerosis149Inhibition of Coagulation factor Xa increases plaque stability and attenuates the onset and progression of atherosclerotic plaque in apolipoprotein e-deficient mice150Regulatory CD4+ T cells from patients with atherosclerosis display pro-inflammatory skewing and enhanced suppression function151Hypoxia-inducible factor (HIF)-1alpha regulates macrophage energy metabolism by mediating miRNAs152Extracellular S100A4 is a key player of smooth muscle cell phenotypic transition : implications in atherosclerosis153Microparticles of healthy origins improve atherosclerosis-associated endothelial progenitor cell dysfunction via microRNA transfer154Arterial remodeling and metabolism impairment in early atherosclerosis155Role of pannexin1 in atherosclerotic plaque formationCalcium fluxes and excitation-contraction coupling158Amphiphysin II induces tubule formation in cardiac cells159Interleukin 1 beta regulation of connexin 43 in cardiac fibroblasts and the effects of adult cardiac myocyte:fibroblast co-culture on myocyte contraction160T-tubular electrical defects contribute to blunted beta-adrenergic response in heart failure161Beat-to-beat variability of intracellular Ca2+ dynamics of Purkinje cells in the infarct border zone of the mouse heart revealed by rapid-scanning confocal microscopy162The efficacy of late sodium current blockers in hypertrophic cardiomyopathy is dependent on genotype : a study on transgenic mouse models with different mutations163Synthesis of cADPR and NAADP by intracellular CD38 in heart : role in inotropic and arrhythmogenic effects of beta-adrenoceptor signalingContractile apparatus166Towards an engineered heart tissue model of HCM using hiPSC expressing the ACTC E99K mutation167Diastolic mechanical load delays structural and functional deterioration of ultrathin adult heart slices in culture168Structural investigation of the cardiac troponin complex by molecular dynamics169Exercise training restores myocardial and oxidative skeletal muscle function from myocardial infarction heart failure ratsOxygen sensing, ischaemia and reperfusion172A novel antibody specific to full-length stromal derived factor-1 alpha reveals that remote conditioning induces its cleavage by endothelial dipeptidyl peptidase 4173Attenuation of myocardial and vascular arginase activity by vagal nerve stimulation via a mechanism involving alpha-7 nicotinic receptor during cardiac ischemia and reperfusion174Novel nanoparticle-mediated medicine for myocardial ischemia-reperfusion injury simultaneously targeting mitochondrial injury and myocardial inflammation175Acetylcholine plays a key role in myocardial ischaemic preconditioning via recruitment of intrinsic cardiac ganglia176The role of nitric oxide and VEGFR-2 signaling in post ischemic revascularization and muscle recovery in aged hypercholesterolemic mice177Efficacy of ischemic preconditioning to protect the human myocardium : the role of clinical conditions and treatmentsCardiomyopathies and fibrosis180Plakophilin-2 haploinsufficiency leads to impaired canonical Wnt signaling in ARVC patient181Improved technique for customized, easier, safer and more reliable transverse aortic arch banding and debanding in mice as a model of pressure overload hypertrophy182Late sodium current inhibitors for the treatment of inducible obstruction and diastolic dysfunction in hypertrophic cardiomyopathy : a study on human myocardium183Angiotensin II receptor antagonist fimasartan has protective role of left ventricular fibrosis and remodeling in the rat ischemic heart184Role of High-Mobility Group Box 1 (HMGB1) redox state on cardiac fibroblasts activities and heart function after myocardial infarction185Atrial remodeling in hypertrophic cardiomyopathy : insights from mouse models carrying different mutations in cTnT186Electrophysiological abnormalities in ventricular cardiomyocytes from a Maine Coon cat with hypertrophic cardiomyopathy : effects of ranolazine187ZBTB17 is a novel cardiomyopathy candidate gene and regulates autophagy in the heart188Inhibition of SRSF4 in cardiomyocytes induces left ventricular hypertrophy189Molecular characterization of a novel cardiomyopathy related desmin frame shift mutation190Autonomic characterisation of electro-mechanical remodeling in an in-vitro leporine model of heart failure191Modulation of Ca2+-regulatory function by three novel mutations in TNNI3 associated with severe infant restrictive cardiomyopathyAging194The aging impact on cardiac mesenchymal like stromal cells (S+P+)195Reversal of premature aging markers after bariatric surgery196Sex-associated differences in vascular remodeling during aging : role of renin-angiotensin system197Role of the receptor for advanced glycation end-products (RAGE) in age dependent left ventricle dysfunctionsGenetics and epigenetics200hsa-miR-21-5p as a key factor in aortic remodeling during aneurysm formation201Co-inheritance of mutations associated with arrhythmogenic and hypertrophic cardiomyopathy in two Italian families202Lamin a/c hot spot codon 190 : form various amino acid substitutions to clinical effects203Treatment with aspirin and atorvastatin attenuate cardiac injury induced by rat chest irradiation : Implication of myocardial miR-1, miR-21, connexin-43 and PKCGenomics, proteomics, metabolomics, lipidomics and glycomics206Differential phosphorylation of desmin at serines 27 and 31 drives the accumulation of preamyloid oligomers in heart failure207Potential role of kinase Akt2 in the reduced recovery of type 2 diabetic hearts subjected to ischemia / reperfusion injury208A proteomics comparison of extracellular matrix remodelling in porcine coronary arteries upon stent implantationMetabolism, diabetes mellitus and obesity211Targeting grk2 as therapeutic strategy for cancer associated to diabetes212Effects of salbutamol on large arterial stiffness in patients with metabolic syndrome213Circulating microRNA-1 and microRNA-133a : potential biomarkers of myocardial steatosis in type 2 diabetes mellitus214Anti-inflammatory nutrigenomic effects of hydroxytyrosol in human adipocytes - protective mechanisms of mediterranean diets in obesity-related inflammation215Alterations in the metal content of different cardiac regions within a rat model of diabetic cardiomyopathyTissue engineering218A novel conductive patch for application in cardiac tissue engineering219Establishment of a simplified and improved workflow from neonatal heart dissociation to cardiomyocyte purification and characterization220Effects of flexible substrate on cardiomyocytes cell culture221Mechanical stretching on cardiac adipose progenitors upregulates sarcomere-related genes ». Cardiovascular Research 111, suppl 1 (1 juillet 2016) : S16—S42. http://dx.doi.org/10.1093/cvr/cvw135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Garcia-Martinez, V., C. Lopez Sanchez, W. Hamed, W. Hamed, JH Hsu, R. Ferrer-Lorente, Maryam Alshamrani et al. « Poster session 2Morphogenetic mechanisms290MiR-133 regulates retinoic acid pathway during early cardiac chamber specification291Bmp2 regulates atrial differentiation through miR-130 during early heart looping formationDevelopmental genetics294Association of deletion allele of insertion/deletion polymorphism in alpha 2B adrenoceptor gene and hypertension with or without type 2 diabetes mellitus295Association of G1359A polymorphism of the endocannabinoid type 1 receptor (CNR1) with coronary artery disease (CAD) with type 2 diabetes mellitusCell growth, differentiation and stem cells - Vascular298Gamma-secretase inhibitor prevents proliferation and migration of ductus arteriosus smooth muscle cells : a role of Notch signaling in postnatal closure of ductus arteriosus299Mesenchymal stromal-like cells (MLCs) derived from induced pluripotent stem (iPS) cells : a promising therapeutic option to promote neovascularization300Sonic Hedgehog promotes mesenchymal stem cell differentiation to vascular smooth muscle cells in cardiovacsular disease301Proinflammatory cytokine secretion and epigenetic modification in endothelial cells treated LPS-GinfivalisCell death and apoptosis - Vascular304Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipidsTranscriptional control and RNA species - Vascular307MicroRNA-34a role in vascular calcification308Local delivery of a miR-146a inhibitor utilizing a clinically applicable approach attenuates neointima formation after vascular injury309Long noncoding RNA landscape of hypoxic endothelial cells310Specific circulating microRNAs levels associate with hypertension, hyperglycemia and dysfunctional HDL in acute coronary syndrome patientsCytokines and cellular inflammation - Vascular313Phosphodiesterase5A up-regulation in vascular endothelium under pro-inflammatory conditions : a newly disclosed anti-inflammatory activity for the omega-3polyunsaturated aatty acid docosahexaenoic acid314Cardiovascular risk modifying with extra-low dose anticytokine drugs in rhematoid arthritis315Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation316Lymphocytic myocarditis coincides with increased plaque inflammation and plaque hemorrhage in coronary arteries, facilitating myocardial infarction317Serum osteoprotegerin level predictsdeclined numerous of circulating endothelial- derived and mononuclear-derived progenitor cells in patients with metabolic syndromeGrowth factors and neurohormones - Vascular320Effect of gastrin-releasing peptide (GRP) on vascular inflammationSignal transduction - Heart323A new synthetic peptide regulates hypertrophy in vitro through means of the inhibition of nfkb324Inducible fibroblast-specific knockout of p38 alpha map kinase is cardioprotective in a mouse model of isoproterenol-induced cardiac hypertrophy325Regulation of beta-adrenoceptor-evoked inotropic responses by inhibitory G protein, adenylyl cyclase isoforms 5 and 6 and phosphodiesterases326Binding to RGS3 and stimulation of M2 muscarinic acetylcholine receptors modulates the substrate specificity of p190RhoGAP in cardiac myocytes327Cardiac regulation of post-translational modifications, parylation and deacetylation in LMNA dilated cardiomyopathy mouse model328Beta-adrenergic regulation of the b56delta/pp2a holoenzyme in cardiac myocytes through b56delta phosphorylation at serine 573Nitric oxide and reactive oxygen species - Vascular331Oxidative stress-induced miR-200c disrupts the regulatory loop among SIRT1, FOXO1 and eNOS332Antioxidant therapy prevents oxidative stress-induced endothelial dysfunction and Enhances Wound Healing333Morphological and biochemical characterization of red blood cell in coronary artery diseaseCytoskeleton and mechanotransduction - Heart336Novel myosin activator, JSH compounds, increased myocardial contractility without chronotropic effect in ratsExtracellular matrix and fibrosis - Vascular339Ablation of Toll-like receptor 9 causes cardiac rupture after myocardial infarction by attenuating proliferation and differentiation of cardiac fibroblasts340Altered vascular remodeling in the mouse hind limb ischemia model in Factor VII activating protease (FSAP) deficiencyVasculogenesis, angiogenesis and arteriogenesis343Pro-angiogenic effects of proly-hydroxylase inhibitors and their potential for use in a novel strategy of therapeutic angiogenesis for coronary total occlusion344Nrf2 drives angiogenesis in transcription-independent manner : new function of the master regulator of oxidative stress response345Angiogenic gene therapy, despite efficient vascular growth, is not able to improve muscle function in normoxic or chronically ischemic rabbit hindlimbs -role of capillary arterialization and shunting346Effect of PAR-1 inhibition on collateral vessel growth in the murine hind limb model347Quaking is a key regulator of endothelial cell differentiation, neovascularization and angiogenesis348"Emerging angiogenesis" in the chick chorioallantoic membrane (CAM). An in vivo study349Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis in vitro and in vivo via EMMPRINEndothelium352Reciprocal regulation of GRK2 and bradykinin receptor stimulation modulate Ca2+ intracellular level in endothelial cells353The roles of bone morphogenetic proteins 9 and 10 in endothelial inflammation and atherosclerosis354The contribution of GPR55 to the L-alpha-lysophosphatidylinositol-induced vasorelaxation in isolated human pulmonary arteries355The endothelial protective ACE inhibitor Zofenoprilat exerts anti-inflammatory activities through H2S production356A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction357Endothelial progenitor cells to apoptotic endothelial cell-derived microparticles ration differentiatesas preserved from reduced ejection fractionheart failure358Proosteogenic genes are activated in endothelial cells of patients with thoracic aortic aneurysm359Endothelin ETB receptors mediate relaxing responses to insulin in pericardial resistance arteries from patients with cardiovascular disease (CVD)Smooth muscle and pericytes362CX3CR1 positive myeloid cells regulate vascular smooth muscle tone by inducing calcium oscillations via activation of IP3 receptors363A novel function of PI3Kg on cAMP regulation, role in arterial wall hyperplasia through modulation of smooth muscle cells proliferation364NRP1 and NRP2 play important roles in the development of neointimal hyperplasia in vivo365Azithromycin induces autophagy in aortic smooth muscle cellsCoagulation, thrombosis and platelets368The real time in vivo evaluation of platelet-dependent aldosterone prothrombotic action in mice369Development of a method for in vivo detection of active thrombi in mice370The antiplatelet effects of structural analogs of the taurine chloramine371The influence of heparin anticoagulant drugs on functional state of human platelets372Regulation of platelet aggregation and adenosine diphosphate release by d dimer in acute coronary syndrome (in vitro study)Oxygen sensing, ischaemia and reperfusion375Sirtuin 5 mediates brain injury in a mouse model of cerebral ischemia-reperfusion376Abscisic acid : a new player in cardiomyocyte protection from ischaemia?377Protective effects of ultramicronized palmitoylethanolamide (PEA-um) in myocardial ischaemia and reperfusion injury in vivo378Identification of stem cell-derived cardiomyocytes using cardiac specific markers and additional testing of these cells in simulated ischemia/reperfusion system379Single-dose intravenous metformin treatment could afford significant protection of the injured rat kidney in an experimental model of ischemia-reperfusion380Cardiotoxicity of long acting muscarinic receptor antagonists used for chronic obstructive pulmonary disease381Dependence antioxidant potential on the concentration of amino acids382The impact of ischemia-reperfusion on physiological parameters,apoptosis and ultrastructure of rabbit myocardium with experimental aterosclerosisMitochondria and energetics385MicroRNA-1 dependent regulation of mitochondrial calcium uniporter (MCU) in normal and hypertrophied hearts386Mitochondrial homeostasis and cardioprotection : common targets for desmin and aB-crystallin387Overexpression of mitofusin-2 (Mfn2) and associated mitochondrial dysfunction in the diabetic heart388NO-dependent prevention of permeability transition pore (MPTP) opening by H2S and its regulation of Ca2+ accumulation in rat heart mitochondria389G protein coupled receptor kinase 2 (GRK2) is fundamental in recovering mitochondrial morphology and function after exposure to ionizing radiation (IR)Gender issues392Sex differences in pulmonary vascular control ; focus on the nitric oxide pathwayAging395Heart failure with preserved ejection fraction develops when feeding western diet to senescence-accelerated mice396Cardiovascular markers as predictors of cognitive decline in elderly hypertensive patients397Changes in connexin43 in old rats with volume overload chronic heart failureGenetics and epigenetics400Calcium content in the aortic valve is associated with 1G>2G matrix metalloproteinase 1 polymorphism401Neuropeptide receptor gene s (NPSR1) polymorphism and sleep disturbances402Endothelin-1 gene Lys198Asn polymorphism in men with essential hypertension complicated and uncomplicated with chronic heart failure403Association of common polymorphisms of the lipoprotein lipase and pon1 genes with the metabolic syndrome in a sample of community participantsGenomics, proteomics, metabolomics, lipidomics and glycomics405Gene expression quantification using multiplexed color-coded probe pairs to determine RNA content in sporadic cardiac myxoma406Large-scale phosphorylation study of the type 2 diabetic heart subjected to ischemia / reperfusion injury407Transcriptome-based identification of new anti-inflammatory properties of the olive oil hydroxytyrosol in vascular endothelial cell under basal and proinflammatory conditions408Gene polymorphisms combinations and risk of myocardial infarctionComputer modelling, bioinformatics and big data411Comparison of the repolarization reserve in three state-of-the-art models of the human ventricular action potentialMetabolism, diabetes mellitus and obesity414Endothelial monocyte-activating polypeptide-II improves heart function in type -I Diabetes mellitus415Admission glucose level is independent predictor of impaired left ventricular function in patients with acute myocardial infarction : a two dimensional speckle-tracking echocardiography study416Association between biochemical markers of lipid profile and inflammatory reaction and stiffness of the vascular wall in hypertensive patients with abdominal obesity417Multiple common co-morbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress and myocardial stiffening418Investigating the cardiovascular effects of antiretroviral drugs in a lean and high fat/sucrose diet rat model of obesity419Statins in the treatment of non-alcoholic steatohepatitis (NASH). Our experience from a 2-year prospective study in Constanta County, Romania420Epicardial adipose tissue as a predictor of cardiovascular outcome in patients with ACS undergoing PCI?Arterial and pulmonary hypertension423Dependence between heart rhythm disorers and ID polymorphism of ACE gene in hypertensive patients424Molecular mechanisms underlying the beneficial effects of Urocortin 2 in pulmonary arterial hypertension425Inhibition of TGf-b axis and action of renin-angiotensin system in human ascending aorta aneurysms426Early signs of microcirculation and macrocirculation abnormalities in prehypertension427Vascular smooth muscle cell-expressed Tie-2 controls vascular tone428Cardiac and vascular remodelling in the development of chronic thrombo-embolic pulmonary hypertension in a novel swine modelBiomarkers431Arrhythmogenic cardiomyopathy : a new, non invasive biomarker432Can circulating microRNAs distinguish type 1 and type 2 myocardial infarction?433Design of a high-throughput multiplex proteomics assay to identify left ventricular diastolic dysfunction in diabetes434Monocyte-derived and P-selectin-carrying microparticles are differently modified by a low fat diet in patients with cardiovascular risk factors who will and who will not develop a cardiovascular event435Red blood cell distribution width assessment by polychromatic interference microscopy of thin films in chronic heart failure436Invasive and noninvasive evaluation of quality of radiofrequency-induced cardiac denervation in patients with atrial fibrillation437The effect of therapeutic hypothermia on the level of brain derived neurotrophic factor (BDNF) in sera following cardiopulmonary resustitation438Novel biomarkers to predict outcome in patients with heart failure and severe aortic stenosis439Biological factors linking depression and anxiety to cardiovascular disease440Troponins and myoglobin dynamic at coronary arteries graftingInvasive, non-invasive and molecular imaging443Diet composition effects on the genetic typing of the mouse ob mutation : a micro-ultrasound characterization of cardiac function, macro and micro circulation and liver steatosis444Characterization of pig coronary and rabbit aortic lesions using IV-OCT quantitative analysis : correlations with histologyGene therapy and cell therapy447Enhancing the survival and angiogenic potential of mouse atrial mesenchymal cells448VCAM-1 expression in experimental myocardial infarction and its relation to bone marrow-derived mononuclear cell retentionTissue engineering451Advanced multi layered scaffold that increases the maturity of stem cell-derived human cardiomyocytes452Response of engineered heart tissue to simulated ischemia/reperfusion in the presence of acute hyperglycemic conditions453Serum albumin hydrogels prevent de-differentiation of neonatal cardiomyocytes454A novel paintbrush technique for transfer of low viscosity ultraviolet light curable cyan methacrylate on saline immersed in-vitro sheep heart ». Cardiovascular Research 111, suppl 1 (1 juillet 2016) : S56—S81. http://dx.doi.org/10.1093/cvr/cvw149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "GAGs, Hurler syndrome, bone marrow stromal cells, induced Pluripotent Stem Cells"

1

GATTO, FRANCESCA. « Exploring hurler syndrome through the study of disease-specific multipotent and pluripotent stem cells ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29890.

Texte intégral
Résumé :
Mucopolysaccharidosis type I (or Hurler syndrome) is a rare genetic disorder, caused by mutations in the idua gene, resulting in the deficiency of α-L-iduronidase enzyme activity and intra-cellular accumulation of glycosaminoglycans. The aim of the present project was focused on the isolation and characterization of two different stem cell populations, multipotent and pluripotent, derived from patients affected by Hurler syndrome. We aim to use Mesenchymal Stem Cells (MSCs) and induced Pluripotent Stem Cells (iPSCs) as a tool to explore still unknown disease mechanisms involved in the genetic metabolic disorder of our interest. Our recently published study focused on the characterization of MSCs isolated from bone marrow of Hurler patients. The MSCs were characterized for their expansion rate, phenotype, telomerase activity, IDUA activity and differentiation capacity towards adipocytes, osteoblasts, chondrocytes and smooth muscle cells in vitro. Interestingly, affected MSCs displayed increased capacity to support osteoclastogenesis according to the upregulation of the RANKL/RANK/OPG molecular pathway in Hurler MSCs. The second study describes the isolation of iPSCs from fibroblasts of Hurler patients. The generated cell lines were fully characterized for their pluripotency markers, gene expression profile, viral copy number integration and differentiation potential both in vitro and in vivo. As a proof of principle, we are attempting to gene correct patient-derived iPSCs with an alternative and safer method than viral vectors, using a Zinc Finger Nucleases-mediated approach for gene targeting of pluripotent cells.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie