Sommaire
Littérature scientifique sur le sujet « GaAs nanomembrane »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « GaAs nanomembrane ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "GaAs nanomembrane"
Raya, Andrés M., David Fuster et José M. Llorens. « Numerical Study on Mie Resonances in Single GaAs Nanomembranes ». Nanomaterials 9, no 6 (5 juin 2019) : 856. http://dx.doi.org/10.3390/nano9060856.
Texte intégralGregušová, Dagmar, Edmund Dobročka, Peter Eliáš, Roman Stoklas, Michal Blaho, Ondrej Pohorelec, Štefan Haščík, Michal Kučera et Róbert Kúdela. « GaAs Nanomembranes in the High Electron Mobility Transistor Technology ». Materials 14, no 13 (22 juin 2021) : 3461. http://dx.doi.org/10.3390/ma14133461.
Texte intégralKim, Kwangeun, et Jaewon Jang. « Improved Tunneling Property of p+Si Nanomembrane/n+GaAs Heterostructures through Ultraviolet/Ozone Interface Treatment ». Inorganics 10, no 12 (28 novembre 2022) : 228. http://dx.doi.org/10.3390/inorganics10120228.
Texte intégralGai, Boju, Yukun Sun, Huandong Chen, Minjoo Larry Lee et Jongseung Yoon. « 10-Fold-Stack Multilayer-Grown Nanomembrane GaAs Solar Cells ». ACS Photonics 5, no 7 (26 juin 2018) : 2786–90. http://dx.doi.org/10.1021/acsphotonics.8b00586.
Texte intégralZhang, Fei, XiaoFei Nie, GaoShan Huang, HongLou Zhen, Fei Ding, ZengFeng Di et YongFeng Mei. « Strain-modulated photoelectric properties of self-rolled GaAs/Al0.26Ga0.74As quantum well nanomembrane ». Applied Physics Express 12, no 6 (23 mai 2019) : 065003. http://dx.doi.org/10.7567/1882-0786/ab2161.
Texte intégralLiu, Chen, Sang June Cho, Yei Hwan Jung, Tzu-Hsuan Chang, Jung-Hun Seo, Solomon Mikael, Yuming Zhang et al. « Bendable MOS capacitors formed with printed In0.2Ga0.8As/GaAs/In0.2Ga0.8As trilayer nanomembrane on plastic substrates ». Applied Physics Letters 110, no 13 (27 mars 2017) : 133505. http://dx.doi.org/10.1063/1.4979509.
Texte intégralYoon, Jongseung. « III-V Nanomembranes for High Performance, Cost-Competitive Photovoltaics ». MRS Advances 2, no 30 (2017) : 1591–96. http://dx.doi.org/10.1557/adv.2017.139.
Texte intégralKim, Kwangeun, Jaewon Jang et Hyungtak Kim. « Negative differential resistance in Si/GaAs tunnel junction formed by single crystalline nanomembrane transfer method ». Results in Physics 25 (juin 2021) : 104279. http://dx.doi.org/10.1016/j.rinp.2021.104279.
Texte intégralBollani, Monica, Alexey Fedorov, Marco Albani, Sergio Bietti, Roberto Bergamaschini, Francesco Montalenti, Andrea Ballabio, Leo Miglio et Stefano Sanguinetti. « Selective Area Epitaxy of GaAs/Ge/Si Nanomembranes : A Morphological Study ». Crystals 10, no 2 (22 janvier 2020) : 57. http://dx.doi.org/10.3390/cryst10020057.
Texte intégralLiu, J., K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl et S. Stobbe. « High-Q optomechanical GaAs nanomembranes ». Applied Physics Letters 99, no 24 (12 décembre 2011) : 243102. http://dx.doi.org/10.1063/1.3668092.
Texte intégralThèses sur le sujet "GaAs nanomembrane"
ALBANI, MARCO GIOCONDO. « Modeling of 3D heteroepitaxial structures by continuum approaches ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241273.
Texte intégralSemiconductors are the main building block for a variety of devices in our life. The semiconductor industry, in the last decades, has evolved by following the Moore's law. However, this incredible innovation process is going to reach an end in the next years, as the miniaturization process is getting too close to the atomistic size, which hinders the development of smaller devices. Therefore, alternative ways to evolve the current technologies have to been exploited. In particular, bottom-up approaches are currently being studied for the growth of 3D nanostructures. In this Thesis, to deal with the 3D growth dynamics, we develop a modeling technique that can reproduce the vertical growth of nanostrucutures. A kinetic approach, related to the incorporation dynamics of adatoms on the surface, has to be adopted to model the peculiar growth of 3D nanostructures, which cannot be explained by the standard thermodynamic arguments based on the surface energy densities. The simulation of the vertical growth is not just challenging for the definition of a proper model, but it requires also a dedicated technique for the numerical solution of the evolution dynamics. In particular, in this Thesis, we exploit a phase field model to simulate the growth on GaAs nanomembranes, based on a finite element method for the solution of the evolution equations. For the development of devices, it is often required to build heterostructures which combine different semiconductors, for instance for optoelectronic applications where a p-n junction is required. Furthermore, the heteroepitaxial growth can be exploited also to transfer some structural material properties, such as the hexagonal lattice structure, from a material to another. In this Thesis, we focus on the core/shell nanowire heteroepitaxial system and we provide a detailed characterization of the elastic deformations in the crystal structure. The elastic relaxation is studied in a continuum elasticity framework by finite element method. In particular, we study the bending of GaP/InGaP nanowires and we correlate this phenomenon with the partitioning of the elastic deformation within the nanostructure. Moreover, we investigate the role of the elastic relaxation in Ge/GeSn core/shell nanowires with respect to the incorporation of Sn in the shell. The evolution of nanostructures can be driven also by the combined effect of surface energy and elastic energy contributions. One of the most studied examples of this is the heteroepitaxial growth of islands on planar substrates, following the Stranski-Krastanov growth mode. For technological applications it is fundamental to control the spatial distribution and the size-uniformity of the islands. In this Thesis, we propose a phase-field model which combines the description for the surface diffusion dynamics and the finite element characterization of the strain field to study the ordered growth of islands on pit-patterned substrates. In particular, we choose the prototypical system where Ge islands are grown on a Si substrate. The advantage of the phase-field model based on finite element method is the possibility to exactly solve the evolution equations of the system, without the need of higher order approximations and with the possibility to precisely consider the effect on the elastic relaxation which is provided by the substrate morphology.
Müller, Christian, I. Neckel, M. Monecke, V. Dzhagan, Georgeta Salvan, S. Schulze, S. Baunack et al. « Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes ». Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-209795.
Texte intégralDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Наталіч, Вікторія Вадимівна, Виктория Вадимовна Наталич et Viktoriia Vadymivna Natalich. « Механізми формування та структурно-морфологічні характеристики наносистем Сu, Сr, Ni, Zn i ZnO ». Thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/70426.
Texte intégralДиссертация посвящена установлению механизмов и закономерностей формирования наносистем Cu, Cr, Ni, Zn в условиях околоравновесной конденсации на основе CVD- (для наносистем Cu) или PVD- технологий (для наносистем Cr, Ni, Zn), а также использования в качестве шаблонов наномембран АОА (для наносистем Zn и Ni). Исследованы: процессы зародышеобразования и механизмы дальнейшего формирования воспроизводимых наносистем Cr в условиях околоравновесной и стационарной конденсации в системе плазма-конденсат; взаимосвязь между структурно-морфологическим характеристикам пористых наносистем ZnO и их сенсорными свойствами по отношению к водороду, пропан-бутановой смеси, а также этанола и ацетона; механизмы структурообразования конденсатов Сu вблизи термодинамического равновесия при использовании CVD-технологии. Предложено принципиально новый технологический подход к процессу получения упорядоченных наносистем Ni и Zn с помощью наномембран Al2O3. При этом впервые управление процессом конденсации внутри пор было реализовано посредством использования разработанного устройства на основе магнетронного распылителя. Установлена взаимосвязь между технологическими параметрами получения наносистем Cu, Cr, Ni, Zn, ZnO и физическими процессами их структурообразования.
The thesis is devoted to the establishment of mechanisms and regularities of the formation of Cu, Cr, Ni, Zn nanosystems under conditions of near-equilibrium condensation on the basis of CVD- (for Cu nanosystems) or PVD-technologies (for Cr, Ni, Zn nanosystems), as well as use as templates of nanosized AOA (for nanosystems Zn and Ni). Investigations: the processes of nucleation and the mechanisms of the further formation of Cr-nanosystems reproduced under conditions of near equilibrium and stationary condensation in the plasma-condensate system; the relationship between the structural and morphological characteristics of porous ZnO nanosystems and their sensory properties in relation to hydrogen, propane-butane mixture, ethanol and acetone; mechanisms of structuring Cu condensates near thermodynamic equilibrium using CVD technology. A fundamentally new technological approach to the process of obtaining ordered Ni and Zn nanosystems with the aid of Al2O3 nanomembranes is proposed. At the same time, for the first time, the control of the process of condensation inside the pores was realized using the developed device based on the magnetron spray. The interconnection between the technological parameters of the production of Cu, Cr, Ni, Zn, ZnO nanosystems and the physical processes of their structuring is established.
Actes de conférences sur le sujet "GaAs nanomembrane"
Burgin, Tucker, Dean Johnson, Henry Chung, Alfred Clark et James McGrath. « Ultrathin Silicon Membranes for Improving Extracorporeal Blood Therapies ». Dans ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-8052.
Texte intégralYang, Z., A. Surrente, K. Galkowski, G. Tutuncuoglu, H. Potts, M. Friedl, J. B. Leran et al. « Optical properties of GaAsSb nanowire networks and GaAs nanomembranes ». Dans 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2016. http://dx.doi.org/10.1109/phosst.2016.7548758.
Texte intégralTutuncuoglu, G., M. Friedl, M. de la Mata, D. Deianae, J. B. Leran, H. Potts, F. Matteini, J. Arbiol et A. Fontcuberta i Morral. « Quantum heterostructures based on GaAs nanomembranes for photonic applications ». Dans 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2016. http://dx.doi.org/10.1109/phosst.2016.7548759.
Texte intégralAbuhimd, Hatem, Abe Zeid, Yung Joon Jung et Sagar Kamarthi. « Process Design for the Flow of Ethanol Chemical Vapor Deposition Grown Vertically Aligned Single Walled Carbon Nanotubes ». Dans ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86650.
Texte intégral