Sommaire
Littérature scientifique sur le sujet « Fuglede conjecture »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Fuglede conjecture ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Fuglede conjecture"
DUTKAY, DORIN ERVIN, et CHUN–KIT LAI. « Some reductions of the spectral set conjecture to integers ». Mathematical Proceedings of the Cambridge Philosophical Society 156, no 1 (25 septembre 2013) : 123–35. http://dx.doi.org/10.1017/s0305004113000558.
Texte intégralLauric, Vasile. « Some consequences of quasicentral approximate units modulo Hilbert-Schmidt class ». Mathematica Slovaca 69, no 2 (24 avril 2019) : 433–36. http://dx.doi.org/10.1515/ms-2017-0235.
Texte intégralIosevich, Alexander, Azita Mayeli et Jonathan Pakianathan. « The Fuglede conjecture holds in ℤp× ℤp ». Analysis & ; PDE 10, no 4 (9 mai 2017) : 757–64. http://dx.doi.org/10.2140/apde.2017.10.757.
Texte intégralIosevich, Alex, Nets Katz et Terence Tao. « The Fuglede spectral conjecture holds for convex planar domains ». Mathematical Research Letters 10, no 5 (2003) : 559–69. http://dx.doi.org/10.4310/mrl.2003.v10.n5.a1.
Texte intégralLYONS, RUSSELL. « Identities and Inequalities for Tree Entropy ». Combinatorics, Probability and Computing 19, no 2 (15 décembre 2009) : 303–13. http://dx.doi.org/10.1017/s0963548309990605.
Texte intégralKiss, Gergely, et Gábor Somlai. « Fuglede’s conjecture holds on ℤ_{𝕡}²×ℤ_{𝕢} ». Proceedings of the American Mathematical Society 149, no 10 (21 juillet 2021) : 4181–88. http://dx.doi.org/10.1090/proc/15541.
Texte intégralMatolcsi, Máté. « Fuglede’s conjecture fails in dimension 4 ». Proceedings of the American Mathematical Society 133, no 10 (24 mars 2005) : 3021–26. http://dx.doi.org/10.1090/s0002-9939-05-07874-3.
Texte intégralFarkas, Bálint, et Révész Szilárd Gy. « Tiles with no spectra in dimension 4 ». MATHEMATICA SCANDINAVICA 98, no 1 (1 mars 2006) : 44. http://dx.doi.org/10.7146/math.scand.a-14982.
Texte intégralGreenfeld, Rachel, et Nir Lev. « Fuglede’s spectral set conjecture for convex polytopes ». Analysis & ; PDE 10, no 6 (14 juillet 2017) : 1497–538. http://dx.doi.org/10.2140/apde.2017.10.1497.
Texte intégralFan, Aihua, Shilei Fan, Lingmin Liao et Ruxi Shi. « Fuglede’s conjecture holds in $$\mathbb {Q}_{p}$$ ». Mathematische Annalen 375, no 1-2 (9 juillet 2019) : 315–41. http://dx.doi.org/10.1007/s00208-019-01867-8.
Texte intégralThèses sur le sujet "Fuglede conjecture"
Shi, Ruxi. « Étude sur la conjecture de Fuglede et les suites oscillantes ». Thesis, Amiens, 2018. http://www.theses.fr/2018AMIE0026/document.
Texte intégralIn this thesis, we solve Fuglede's conjecture on the field of p-adic numbers, and study some randomness and the oscillating properties of sequences related to Sarnak's conjecture. In the first part, we first prove Fuglede's conjecture for compact open sets in the field Q_p which states that a compact open set in Q_p is a spectral set if and only if it tiles Q_p by translation. It is also proved that a compact open set is a spectral set (or a tile) if and only if it is p-homogeneous. We characterize spectral sets in Z/p^n Z (p>1 prime, n>0 integer) by tiling property and also by homogeneity. Finally, we prove Fuglede's conjecture in Q_p without the assumption of compact open sets and also show that the spectral sets (or tiles) are the sets which differ by null sets from compact open sets. In the second part, we first give several equivalent definitions of oscillating sequences in terms of their disjointness from different dynamical systems on tori. Then we define Chowla property and Sarnak property for numerical sequences taking values 0 or complex numbers of modulus 1. We prove that Chowla property implies Sarnak property. It is also proved that for Lebesgue almost every b>1, the sequence (e^{2 pi b^n})_{n in N} shares Chowla property and consequently is orthogonal to all topological dynamical systems of zero entropy. We also discuss whether the samples of a given random sequence have almost surely Chowla property. Some dependent random sequences having almost surely Chowla property are constructed
LANZAROTTO, GRETA. « EXTENDED VUZA CANONS ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/393094.
Texte intégralIn this thesis, we deal with Tiling Rhythmic Canons, which are purely rhythmic contrapuntal compositions. Canons in music have a very long tradition; among these, a few cases of tiling rhythmic canons (i.e., canons such that, given a fixed tempo, at every beat exactly one voice is playing) have emerged. Only in the last century, stemming from the analogous problem of factorizing finite abelian groups, aperiodic tiling rhythmic canons have been studied: these are canons that tile a certain interval of time in which each voice (inner voice) plays at an aperiodic sequence of beats, and the sequence of starting beats of every voice (outer voice) is also aperiodic. From the musical point of view, the seminal paper was probably the four-part article written by D.T. Vuza between 1991 and 1993, while the mathematical counterpart of the problem was studied also before, e.g., by de Bruijn, Sands, etc., and after, e.g., by Coven and Meyerowitz, Jedrzejewski, Amiot, Andreatta, etc. A thorough theory of the conditions of existence and the structure of aperiodic tiling rhythmic canons has not been established yet. In this thesis, we try to give a contribution to this fascinating field. In Chapter 2, we present tiling rhythmic canons from a mathematical and algebraic point of view, focusing on their polynomial representation and reporting the fundamental results known in the literature. In Chapter 3, we deal with aperiodic rhythmic canons, that is canons in which in both rhythms there are no repeated inner structures: neither the inner nor the outer rhythm is obtained as a repetition of a shorter rhythm. From a mathematical point of view, they are the most interesting canons since they become a possible approach to solving the Fuglede conjecture on spectral domains. If one of the sets, say $A$, is given, it is well-known that the problem of finding a complement $B$ has, in general, no unique solution. It is very easy to find tiling canons in which at least one of the sets is periodic, i.e., it is built by repeating a shorter rhythm. In Chapter 4 we deal with the realization of two algorithms whose purpose is to find the complementary tiling rhythm of a given aperiodic rhythm in a certain period $n$. To enumerate all aperiodic tiling canons, one must overcome the problem that the combinatorial size of the domain becomes very soon enormous. The main contributions to the algorithmic approach to the problem are the Integer Linear Programming (ILP) model and the SAT Encoding to solve the Aperiodic Tiling Complements Problem. Using a modern SAT solver, we have been therefore able to compute the complete list of aperiodic tiling complements of some classes of Vuza rhythms for periods n = {180, 420, 900}.
Actes de conférences sur le sujet "Fuglede conjecture"
Siripuram, Aditya, et Brad Osgood. « LP relaxations and Fuglede's conjecture ». Dans 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437309.
Texte intégral