Articles de revues sur le sujet « Frequency domain multiplexing »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Frequency domain multiplexing.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Frequency domain multiplexing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chen, Xiang, Hao Liu, Mai Hu, Lu Yao, Zhenyu Xu, Hao Deng et Ruifeng Kan. « Frequency-Domain Detection for Frequency-Division Multiplexing QEPAS ». Sensors 22, no 11 (26 mai 2022) : 4030. http://dx.doi.org/10.3390/s22114030.

Texte intégral
Résumé :
To achieve multi-gas measurements of quartz-enhanced photoacoustic spectroscopy (QEPAS) sensors under a frequency-division multiplexing mode with a narrow modulation frequency interval, we report a frequency-domain detection method. A CH4 absorption line at 1653.72 nm and a CO2 absorption line at 2004.02 nm were investigated in this experiment. A modulation frequency interval of as narrow as 0.6 Hz for CH4 and CO2 detection was achieved. Frequency-domain 2f signals were obtained with a resolution of 0.125 Hz using a real-time frequency analyzer. With the multiple linear regressions of the frequency-domain 2f signals of various gas mixtures, small deviations within 2.5% and good linear relationships for gas detection were observed under the frequency-division multiplexing mode. Detection limits of 0.6 ppm for CH4 and 2.9 ppm for CO2 were simultaneously obtained. With the 0.6-Hz interval, the amplitudes of QEPAS signals will increase substantially since the modulation frequencies are closer to the resonant frequency of a QTF. Furthermore, the frequency-domain detection method with a narrow interval can realize precise gas measurements of more species with more lasers operating under the frequency-division multiplexing mode. Additionally, this method, with a narrow interval of modulation frequencies, can also realize frequency-division multiplexing detection for QEPAS sensors under low pressure despite the ultra-narrow bandwidth of the QTF.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lanting, T. M., Hsiao-Mei Cho, John Clarke, Matt Dobbs, Adrian T. Lee, M. Lueker, P. L. Richards, A. D. Smith et H. G. Spieler. « Frequency domain multiplexing for bolometer arrays ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 520, no 1-3 (mars 2004) : 548–50. http://dx.doi.org/10.1016/j.nima.2003.11.311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kim, Eun-Hee, Han-Saeng Kim et Ki-Won Lee. « Range Dividing MIMO Waveform for Improving Tracking Performance ». Sensors 21, no 21 (2 novembre 2021) : 7290. http://dx.doi.org/10.3390/s21217290.

Texte intégral
Résumé :
A multiple-input multiple-output (MIMO) method that shares the same frequency band can efficiently increase radar performance. An essential element of a MIMO radar is the orthogonality of the waveform. Typically, orthogonality is obtained by spreading different signals into divided domains such as in time-domain multiplexing, frequency-domain multiplexing, and code domain multiplexing. This paper proposes a method of spreading the interference signals outside the range bins of interest for pulse doppler radars. This is achieved by changing the pulse repetition frequency under certain constraints, and an additional gain can be obtained by doppler processing. This method is very effective for improving the angular accuracy of the MIMO radar for a small number of air targets, although it may have limitations in use for many targets or in high clutter environments.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Jing, et Dao-ben Li. « Overlapping Multiplexing in Both Time and Frequency Domain ». Journal of Electronics & ; Information Technology 30, no 5 (15 mars 2011) : 1176–79. http://dx.doi.org/10.3724/sp.j.1146.2007.00541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sakamoto, Takahide. « Orthogonal time-frequency domain multiplexing with multilevel signaling ». Optics Express 22, no 1 (7 janvier 2014) : 773. http://dx.doi.org/10.1364/oe.22.000773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lanting, T. M., H. M. Cho, J. Clarke, M. A. Dobbs, W. L. Holzapfel, A. T. Lee, M. Lueker, P. L. Richards, A. D. Smith et H. G. Spieler. « Frequency-Domain SQUID Multiplexing of Transition-Edge Sensors ». IEEE Transactions on Appiled Superconductivity 15, no 2 (juin 2005) : 567–70. http://dx.doi.org/10.1109/tasc.2005.849921.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mishra, M., J. Mattingly, J. M. Mueller et R. M. Kolbas. « Frequency domain multiplexing of pulse mode radiation detectors ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 902 (septembre 2018) : 117–22. http://dx.doi.org/10.1016/j.nima.2018.06.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Oh, W. Y., S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney et B. E. Bouma. « High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing ». Optics Express 16, no 2 (14 janvier 2008) : 1096. http://dx.doi.org/10.1364/oe.16.001096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Arik, Sercan O., Daulet Askarov et Joseph M. Kahn. « Adaptive Frequency-Domain Equalization in Mode-Division Multiplexing Systems ». Journal of Lightwave Technology 32, no 10 (mai 2014) : 1841–52. http://dx.doi.org/10.1109/jlt.2014.2303079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Xu, Q., H. Wang, Z. Xu et G. Li. « Frequency domain multiplexing for parallel acquisition of MR images ». Electronics Letters 42, no 6 (2006) : 326. http://dx.doi.org/10.1049/el:20063890.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Lowitz, A. E., A. N. Bender, P. Barry, T. W. Cecil, C. L. Chang, R. Divan, M. A. Dobbs et al. « Performance of a Low-Parasitic Frequency-Domain Multiplexing Readout ». Journal of Low Temperature Physics 199, no 1-2 (14 février 2020) : 192–99. http://dx.doi.org/10.1007/s10909-020-02384-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hirose, Akira, et Rolf Eckmiller. « Proposal of frequency-domain multiplexing in optical neural networks ». Neurocomputing 10, no 2 (mars 1996) : 197–204. http://dx.doi.org/10.1016/0925-2312(95)00129-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wei, Meijun, Serdar Sezginer, Guan Gui et Hikmet Sari. « Bridging Spatial Modulation With Spatial Multiplexing : Frequency-Domain ESM ». IEEE Journal of Selected Topics in Signal Processing 13, no 6 (octobre 2019) : 1326–35. http://dx.doi.org/10.1109/jstsp.2019.2913131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Iyomoto, N., T. Ichitsubo, K. Mitsuda, N. Y. Yamasaki, R. Fujimoto, T. Oshima, K. Futamoto et al. « Frequency-domain multiplexing of TES microcalorimeter array with CABBAGE ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 520, no 1-3 (mars 2004) : 566–69. http://dx.doi.org/10.1016/j.nima.2003.11.316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lanting, T. M., K. Arnold, Hsiao-Mei Cho, John Clarke, Matt Dobbs, William Holzapfel, Adrian T. Lee et al. « Frequency-domain readout multiplexing of transition-edge sensor arrays ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 559, no 2 (avril 2006) : 793–95. http://dx.doi.org/10.1016/j.nima.2005.12.142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

van der Kuur, J., P. A. J. de Korte, H. F. C. Hoevers, M. P. Bruijn, M. L. Ridder, M. Kiviranta et H. Seppä. « Frequency-domain multiplexing development for high-count-rate microcalorimeters ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 559, no 2 (avril 2006) : 820–22. http://dx.doi.org/10.1016/j.nima.2005.12.209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bounab, A., P. de Korte, A. Cros, J. van der Kuur, B. J. van Leeuwen, B. Monna, R. Mossel, A. Nieuwenhuizen et L. Ravera. « Baseband feedback for SAFARI-SPICA using Frequency Domain Multiplexing ». EAS Publications Series 37 (2009) : 101–6. http://dx.doi.org/10.1051/eas/0937012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kumar, Anand T. N., Steven S. Hou et William L. Rice. « Tomographic fluorescence lifetime multiplexing in the spatial frequency domain ». Optica 5, no 5 (15 mai 2018) : 624. http://dx.doi.org/10.1364/optica.5.000624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gunawan, Wahyu-Hendra, Yang Liu, Chi-Wai Chow, Yun-Han Chang et Chien-Hung Yeh. « High Speed Visible Light Communication Using Digital Power Domain Multiplexing of Orthogonal Frequency Division Multiplexed (OFDM) Signals ». Photonics 8, no 11 (8 novembre 2021) : 500. http://dx.doi.org/10.3390/photonics8110500.

Texte intégral
Résumé :
In order to increase transmission capacity, multiplexing schemes in different physical dimensions, including time, frequency, modulation quadrature, polarization, and space, can be employed. In this work, we propose and demonstrate a red color laser-diode (LD) based visible-light-communication (VLC) system using two kinds of digital domain multiplexing schemes, orthogonal-frequency-division-multiplexing (OFDM) and power-domain division-multiplexing (PowDM). The two digital domain multiplexed data can achieve data rates of 1.66 Gbit/s and 6.41 Gbit/s, respectively, providing a total data rate of 8.07 Gbit/s, fulfilling the pre-forward error correction (pre-FEC) bit-error-rate (BER) limit. The measured signal-to-noise ratios (SNRs) are 10.96 dB and 14.45 dB, respectively. Here, similar to OFDM, the PowDM can enhance the total system capacity by allowing acceptable signal spectra overlapping among different power division signals to maximize the bandwidth utilization. An experiment to verify and evaluate the proposed work is performed. The modulation and demodulation of OFDM and PowDM are discussed. The optimum power levels of the individual signals in the PowDM signal are also analyzed.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Shi, Kai, et Benn C. Thomsen. « Sparse Adaptive Frequency Domain Equalizers for Mode-Group Division Multiplexing ». Journal of Lightwave Technology 33, no 2 (15 janvier 2015) : 311–17. http://dx.doi.org/10.1109/jlt.2014.2374837.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

MacLachlan, R. A., et C. N. Riviere. « High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing ». IEEE Transactions on Instrumentation and Measurement 58, no 6 (juin 2009) : 1991–2001. http://dx.doi.org/10.1109/tim.2008.2006132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

He, Wang, Xu Qin, Ren Jiejing et Li Gengying. « Four-channel magnetic resonance imaging receiver using frequency domain multiplexing ». Review of Scientific Instruments 78, no 1 (janvier 2007) : 015102. http://dx.doi.org/10.1063/1.2424426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

YAMASAKI, N. Y. « Frequency Domain Multiplexing of TES Signals by Magnetic Field Summation ». IEICE Transactions on Electronics E89-C, no 2 (1 février 2006) : 98–105. http://dx.doi.org/10.1093/ietele/e89-c.2.98.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hattori, K., S. Ariyoshi, M. Hazumi, H. Ishino, A. Kibayashi, S. Mima, C. Otani et al. « Novel Frequency-Domain Multiplexing MKID Readout for the LiteBIRD Satellite ». Journal of Low Temperature Physics 167, no 5-6 (20 janvier 2012) : 671–77. http://dx.doi.org/10.1007/s10909-012-0506-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

van der Kuur, J., P. A. J. de Korte, P. de Groene, N. H. R. Baars, M. P. Lubbers et M. Kiviranta. « Implementation of frequency domain multiplexing in imaging arrays of microcalorimeters ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 520, no 1-3 (mars 2004) : 551–54. http://dx.doi.org/10.1016/j.nima.2003.11.312.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Mlodzianowski, J., D. Uttamchandani et B. Culshaw. « A simple frequency domain multiplexing system for optical point sensors ». Journal of Lightwave Technology 5, no 7 (1987) : 1002–7. http://dx.doi.org/10.1109/jlt.1987.1075592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

van Soest, Gijs, Martin Villiger, Evelyn Regar, Guillermo J. Tearney, Brett E. Bouma et Antonius F. W. van der Steen. « Frequency domain multiplexing for speckle reduction in optical coherence tomography ». Journal of Biomedical Optics 17, no 7 (13 juillet 2012) : 0760181. http://dx.doi.org/10.1117/1.jbo.17.7.076018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Lu, Lidong, Yuejiang Song, Fan Zhu et Xuping Zhang. « Coherent optical time domain reflectometry using three frequency multiplexing probe ». Optics and Lasers in Engineering 50, no 12 (décembre 2012) : 1735–39. http://dx.doi.org/10.1016/j.optlaseng.2012.07.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zhang, Xulun, Lixia Xi, Jiacheng Wei, Shucheng Du, Wenbo Zhang, Jianping Li et Xiaoguang Zhang. « Nonlinear frequency domain PMD modeling and equalization for nonlinear frequency division multiplexing transmission ». Optics Express 29, no 18 (17 août 2021) : 28190. http://dx.doi.org/10.1364/oe.428053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jiang, Zheng, Bin Han, Peng Chen, Fengyi Yang et Qi Bi. « Design of Joint Spatial and Power Domain Multiplexing Scheme for Massive MIMO Systems ». International Journal of Antennas and Propagation 2015 (2015) : 1–10. http://dx.doi.org/10.1155/2015/368463.

Texte intégral
Résumé :
Massive Multiple-Input Multiple-Output (MIMO) is one of the key techniques in 5th generation wireless systems (5G) due to its potential ability to improve spectral efficiency. Most of the existing works on massive MIMO only consider Time Division Duplex (TDD) operation that relies on channel reciprocity between uplink and downlink channels. For Frequency Division Duplex (FDD) systems, with continued efforts, some downlink multiuser MIMO scheme was recently proposed in order to enable “massive MIMO” gains and simplified system operations with limited number of radio frequency (RF) chains in FDD system. However these schemes, such as Joint Spatial Division and Multiplexing (JSDM) scheme and hybrid precoding scheme, only focus on multiuser transmission in spatial domain. Different from most of the existing works, this paper proposes Joint Spatial and Power Multiplexing (JSPM) scheme in FDD systems. It extends existing FDD schemes from spatial division and multiplexing to joint spatial and power domain to achieve more multiplexing gain. The user grouping and scheduling scheme of JSPM is studied and the asymptotic expression for the sum capacity is derived as well. Finally, simulations are conducted to illustrate the effectiveness of the proposed scheme.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Xia, Ming Fei, Yong Chuan Wang et Gui Zhou Lv. « Single-Carrier Frequency Domain Equalization and Wireless Applications ». Applied Mechanics and Materials 135-136 (octobre 2011) : 907–12. http://dx.doi.org/10.4028/www.scientific.net/amm.135-136.907.

Texte intégral
Résumé :
In recent years, single-carrier system has again become an interesting and complementary alternative to multi-carrier system such as orthogonal frequency division multiplexing (OFDM). This has been largely due to the use of frequency domain equalizer implemented by means of fast Fourier transforms (FFT), bringing the complexity close to that of OFDM. This paper aims at providing an overview of single-carrier frequency domain equalization (SC-FDE) and its Wireless applications. We review the brief history and system model of SC-FDE, and the integration of SC-FDE and other wireless transmission techniques. We also present several possible future research topics about SC-FDE.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Xue, Guang Da, Li Li Hu et Da Jin Wang. « A Novel Frequency Synchronization Algorithm Based on PN Sequences and Pilots for TFU-OFDM Systems ». Applied Mechanics and Materials 58-60 (juin 2011) : 1541–47. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.1541.

Texte intégral
Résumé :
In this paper, a novel frequency synchronization algorithm for a new modulation scheme named time domain and frequency domain united orthogonal frequency division multiplexing (TFU-OFDM) is introduced. The frequency synchronization method has two-steps, which joints time and frequency domain estimation based on PN sequences and pilots. We utilize the PN sequences as guard intervals in time domain to achieve the first-step estimation and the second-step is realized by the pilots in data blocks in frequency domain. The simulation results and analysis show that the proposed frequency synchronization method could achieve fast and reliable synchronization and sufficient precision, and provides excellent performance for TFU-OFDM systems.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kwon, U. K., D. Kim et G. H. Im. « Frequency domain pilot multiplexing technique for channel estimation of SC-FDE ». Electronics Letters 44, no 5 (2008) : 364. http://dx.doi.org/10.1049/el:20083563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Hubmayr, J., J. E. Austermann, J. A. Beall, D. Becker, D. A. Bennett, B. A. Benson, L. E. Bleem et al. « Stability of Al-Mn Transition Edge Sensors for Frequency Domain Multiplexing ». IEEE Transactions on Applied Superconductivity 21, no 3 (juin 2011) : 203–6. http://dx.doi.org/10.1109/tasc.2010.2090630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Chapman, Benjamin J., Eric I. Rosenthal, Joseph Kerckhoff, Leila R. Vale, Gene C. Hilton et K. W. Lehnert. « Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout ». Applied Physics Letters 110, no 16 (17 avril 2017) : 162601. http://dx.doi.org/10.1063/1.4981390.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Iida, Hiroyuki, Yusuke Koshikiya, Fumihiko Ito et Kuniaki Tanaka. « High-Sensitivity Coherent Optical Time Domain Reflectometry Employing Frequency-Division Multiplexing ». Journal of Lightwave Technology 30, no 8 (avril 2012) : 1121–26. http://dx.doi.org/10.1109/jlt.2011.2170960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

van Soest, Gijs, Martin Villiger, Evelyn Regar, Guillermo J. Tearney, Brett E. Bouma et Antonius F. W. van der Steena. « Errata : Frequency domain multiplexing for speckle reduction in optical coherence tomography ». Journal of Biomedical Optics 17, no 9 (21 septembre 2012) : 0998011. http://dx.doi.org/10.1117/1.jbo.17.9.099801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Yan, Yanxin, Yi Gong et Maode Ma. « Two-stage frequency-domain oversampling receivers for cyclic prefix orthogonal frequency-division multiplexing systems ». IET Communications 10, no 10 (1 juillet 2016) : 1246–54. http://dx.doi.org/10.1049/iet-com.2015.0811.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

KAWATA, SOTARO, et AKIRA HIROSE. « FREQUENCY-MULTIPLEXING ABILITY OF COMPLEX-VALUED HEBBIAN LEARNING IN LOGIC GATES ». International Journal of Neural Systems 18, no 02 (avril 2008) : 173–84. http://dx.doi.org/10.1142/s0129065708001488.

Texte intégral
Résumé :
Lightwave has attractive characteristics such as spatial parallelism, temporal rapidity in signal processing, and frequency band vastness. In particular, the vast carrier frequency bandwidth promises novel information processing. In this paper, we propose a novel optical logic gate that learns multiple functions at frequencies different from one another, and analyze the frequency-domain multiplexing ability in the learning based on complex-valued Hebbian rule. We evaluate the averaged error function values in the learning process and the error probabilities in the realized logic functions. We investigate optimal learning parameters as well as performance dependence on the number of learning iterations and the number of parallel paths per neuron. Results show a trade-off among the learning parameters such as learning time constant and learning gain. We also find that when we prepare 10 optical path differences and conduct 200 learning iterations, the error probability completely decreases to zero in a three-function multiplexing case. However, at the same time, the error probability is tolerant of the path number. That is, even if the path number is reduced by half, error probability is found almost zero. The results can be useful to determine neural parameters for future optical neural network systems and devices that utilize the vast frequency bandwidth for frequency-domain multiplexing.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Guo, Ye Cai, Qu Chen, Jun Guo et Xiao Li Miao. « Fractionally Spaced Frequency Equalization Method for Orthogonal Frequency Division Multiplexing (OFDM) Jointing with Modified Pilot Sequences ». Applied Mechanics and Materials 198-199 (septembre 2012) : 1569–72. http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.1569.

Texte intégral
Résumé :
In order to obtain accurate and high-speed data transmission, the orthogonal frequency division multiplexing(OFDM) technology is introduced and it is a kind of a multi-carriers modulation technology with high efficiency in the use of frequency band and characteristics of strong anti-interference ability. The fractionally spaced OFDM frequency domain equalization algorithm based on modified pilot sequences is proposed. In this proposed algorithm, one-dimensional linear interpolation method is used to estimate the frequency domain response of all subcarriers by part of the subcarriers’ frequency domain response with reducing the number of transmitted pilot sequences, and received signals are oversampled to acquire more detailed channel information. The computer simulations in underwater acoustic channel show that the performance of proposed method outperforms the single-carrier system and traditional OFDM system.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Abdourahamane, Ali. « ADVANTAGES OF OPTICAL ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING IN COMMUNICATIONS SYSTEMS ». EUREKA : Physics and Engineering 2 (31 mars 2016) : 27–33. http://dx.doi.org/10.21303/2461-4262.2016.00058.

Texte intégral
Résumé :
The role of the optical transmitter is to generate the optical signal, impose the information bearing signal, and launch the modulated signal into the optical fiber. The semiconductor light sources are commonly used in state-of-the-art optical communication systems. Optical communication systems has become one of the important systems after the advent of telephone, internet, radio networks in the second half of the 20th century. The development of optical communication was caused primarily by the rapidly rising demand for Internet connectivity. Orthogonal frequency-division multiplexing (OFDM) belongs to a wide class of multicarrier modulation. Orthogonal frequency-division multiplexing has succeeded in a wide range of applications in the wireless communication domain from video/audio digital broadcasting to wireless local area networks (LANs). Although their very low loss compared to that of the wireless counterpart, optical systems still need renovation for spans commonly less than150 Km. In this paper advantages of optical orthogonal frequency division multiplexing in communications systems will explained.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Xu, Tongyang, Hedaia Ghannam et Izzat Darwazeh. « Practical Evaluations of SEFDM : Timing Offset and Multipath Impairments ». Infocommunications journal, no 4 (2018) : 2–9. http://dx.doi.org/10.36244/icj.2018.4.1.

Texte intégral
Résumé :
The non-orthogonal signal waveform spectrally efficient frequency division multiplexing (SEFDM) improves spectral efficiency at the cost of self-created inter carrier interference (ICI). As the orthogonal property, similar to orthogonal frequency division multiplexing (OFDM), no longer exists, the robustness of SEFDM in realistic wireless environments might be weakened. This work aims to evaluate the sensitivity of SEFDM to practical channel distortions using a professional experiment testbed. First, timing offset is studied in a bypass channel to locate the imperfection of the testbed and its impact on SEFDM signals. Then, the joint effect of a multipath frequency selective channel and additive white Gaussian noise (AWGN) is investigated in the testbed. Through practical experiments, we demonstrate the performance of SEFDM in realistic radio frequency (RF) environments and verify two compensation methods for SEFDM. Our results show first frequency-domain compensation works well in frequency non-selective channel conditions while time-domain compensation method is suitable for frequency selective channel conditions. This work paves the way for the application of SEFDM in different channel scenarios.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Peng, Yaqiu, et Mingqi Li. « Discrete Fourier Transform-Based Block Faster-Than- Nyquist Transmission for 5G Wireless Communications ». Applied Sciences 10, no 4 (14 février 2020) : 1313. http://dx.doi.org/10.3390/app10041313.

Texte intégral
Résumé :
Faster-than-Nyquist (FTN) signaling is regarded as a potential candidate for improving data rate and spectral efficiency of 5G new radio (NR). However, complex detectors have to be utilized to eliminate the inter symbol interference (ISI) introduced by time-domain packing and the inter carrier interference (ICI) introduced by frequency-domain packing. Thus, the exploration of low complexity transceiver schemes and detectors is of great importance. In this paper, we consider a discrete Fourier transform (DFT) block transmission for multi-carrier FTN signaling, i.e., DBT-MC-FTN. With the aid of DFTs/IDFTs and frequency domain windowing, time- and frequency domain packing can be implemented flexibly and efficiently. At the receiver, the inherent ISI and ICI can be canceled via a soft successive interference cancellation (SIC) detector. The effectiveness of the detector is verified by the simulation over the additive white Gaussian noise channel and the fading channel. Furthermore, based on the characteristics of the efficient architecture of DFT-MC-FTN, two pilot-aided channel estimation schemes, i.e., time-division-multiplexing DBT-MC-FTN symbol-level pilot, and frequency-division-multiplexing subcarrier-level pilot within the DBT-MC-FTN symbol, respectively, are also derived. Numerical results show that the proposed channel estimation schemes can achieve high channel estimation accuracy.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kim, J. Y., T. Hwang et Y. H. You. « Blind frequency-offset tracking scheme for multiband orthogonal frequency division multiplexing using time-domain spreading ». IET Communications 5, no 11 (22 juillet 2011) : 1544–49. http://dx.doi.org/10.1049/iet-com.2010.0631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mohammed, Asaad, et Maher K. Mahmood Al-Azawi. « COMPARISON OF TIME AND TIME-FREQUENCY DOMAINS IMPULSIVE NOISE MITIGATION TECHNIQUES FOR POWER LINE COMMUNICATIONS ». Journal of Engineering and Sustainable Development 27, no 1 (1 janvier 2023) : 68–79. http://dx.doi.org/10.31272/jeasd.27.1.6.

Texte intégral
Résumé :
Impulsive noise is one of the foremost situations in power line communications that degrades the performance of orthogonal frequency division multiplexing used for the power line communications channel. In this paper, a channel version of the broadband power line communications is assumed when evaluating the bit error rate performance. Three impulsive noise environments are assumed, namely heavily, moderately, and weakly disturbed. The well-known time domain mitigation techniques are tested first. These are clipping, blanking, and mixing clipping with blanking. The results of Matlab simulations show that these time-domain mitigation techniques don't significantly improve the bit error rate performance. A hybrid domain of time and frequency mitigation techniques are used to enhance the bit error rate performance. The Matlab simulation results show that this hybrid domain of time and frequency approach outperforms time domain nonlinearities and can largely improve the bit error rate performance. Signal-to-noise ratio gains of about 8 dB, 10 dB, and 10 dB are obtained for heavily, moderately, and weakly disturbed channels, respectively, using the domains of time and frequency mitigation technique at a bit error rate of when compared to the blanking time domain technique.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Mishra, M., et J. Mattingly. « Convolution-based frequency domain multiplexing of SiPM readouts using the DRS4 digitizer ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 1025 (février 2022) : 166116. http://dx.doi.org/10.1016/j.nima.2021.166116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Xuping Zhang, Yuejiang Song et Lidong Lu. « Time Division Multiplexing Optical Time Domain Reflectometry Based on Dual Frequency Probe ». IEEE Photonics Technology Letters 24, no 22 (novembre 2012) : 2005–8. http://dx.doi.org/10.1109/lpt.2012.2217737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

NAKAJIMA, A., D. GARG et F. ADACHI. « Frequency-Domain Iterative Parallel Interference Cancellation for Multicode Spread-Spectrum MIMO Multiplexing ». IEICE Transactions on Communications E91-B, no 5 (1 mai 2008) : 1531–39. http://dx.doi.org/10.1093/ietcom/e91-b.5.1531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kimura, S., K. Masui, Y. Takei, K. Mitsuda, N. Y. Yamasaki, R. Fujimoto, T. Morooka et S. Nakayama. « Performance Measurement of the 8-Input SQUIDs for TES Frequency Domain Multiplexing ». Journal of Low Temperature Physics 151, no 3-4 (24 janvier 2008) : 946–51. http://dx.doi.org/10.1007/s10909-008-9771-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Oral, T., D. van Loon, R. Hou, A. C. T. Nieuwenhuizen, R. H. den Hartog et B. J. van Leeuwen. « A Low-Power Algorithm for Baseband Feedback Used with Frequency Domain Multiplexing ». Journal of Low Temperature Physics 167, no 5-6 (27 janvier 2012) : 658–63. http://dx.doi.org/10.1007/s10909-012-0456-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie