Articles de revues sur le sujet « Frequency Division Multiplexing Acce »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Frequency Division Multiplexing Acce.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Frequency Division Multiplexing Acce ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

JIANG, Hui, et Dao-ben LI. « Overlapped frequency-time division multiplexing ». Journal of China Universities of Posts and Telecommunications 16, no 2 (avril 2009) : 8–13. http://dx.doi.org/10.1016/s1005-8885(08)60193-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Corcoran, Bill, Chen Zhu, Binhuang Song et Arthur J. Lowery. « Folded orthogonal frequency division multiplexing ». Optics Express 24, no 26 (14 décembre 2016) : 29670. http://dx.doi.org/10.1364/oe.24.029670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zheng, Zi Wei. « Iterative Channel Estimation for the Chinese Digital Television Terrestrial Broadcasting Systems with the Multiple-Antenna Receivers ». Advanced Engineering Forum 6-7 (septembre 2012) : 439–44. http://dx.doi.org/10.4028/www.scientific.net/aef.6-7.439.

Texte intégral
Résumé :
Orthogonal frequency division multiplexing is an effective against multipath fading and high data throughput wireless channel transmission technology. Assistance with the inverse fast Fourier transform and fast Fourier transform operation, orthogonal frequency division multiplexing modulation and demodulation operations of the system convenient and convenient hardware implementation, orthogonal frequency division multiplexing, so in the modern digital television terrestrial broadcasting the system is widely used to support high performance bandwidth-efficient multimedia services. Broadband multi-carrier orthogonal frequency division multiplexing with multi-antenna and multi-antenna receiving system, to increase the diversity gain and improve the capacity of the system in different multipath fading channel. Accurate channel estimation in a simple channel equalization and decoding of broadband multi-carrier orthogonal frequency division multiple-antenna receiver and channel estimation accuracy and multiplexing system is very important, is the key to the performance of the overall broadband multi-carrier orthogonal frequency division multiplexing system in the multi-antenna receiver bit error rate. In this paper, iterative channel estimation to plan for digital terrestrial television broadcasting broadband multi-carrier orthogonal frequency division multiple antenna receiver multiplexing system proposal.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shrivastava, Sandeep, Alok Jain et Ram Kumar Soni. « Survey of Orthogonal Frequency Division Multiplexing ». International Journal of Engineering Trends and Technology 50, no 1 (25 août 2017) : 12–16. http://dx.doi.org/10.14445/22315381/ijett-v50p203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yousefi, Mansoor, et Xianhe Yangzhang. « Linear and Nonlinear Frequency-Division Multiplexing ». IEEE Transactions on Information Theory 66, no 1 (janvier 2020) : 478–95. http://dx.doi.org/10.1109/tit.2019.2941479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shieh, W., et C. Athaudage. « Coherent optical orthogonal frequency division multiplexing ». Electronics Letters 42, no 10 (2006) : 587. http://dx.doi.org/10.1049/el:20060561.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gokceli, Selahattin, et Gunes Karabulut Kurt. « Superposition Coded-Orthogonal Frequency Division Multiplexing ». IEEE Access 6 (2018) : 14842–56. http://dx.doi.org/10.1109/access.2018.2814050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bledowski, Ian A., Thomas O. H. Charrett, Daniel Francis, Stephen W. James et Ralph P. Tatam. « Frequency-division multiplexing for multicomponent shearography ». Applied Optics 52, no 3 (11 janvier 2013) : 350. http://dx.doi.org/10.1364/ao.52.000350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Xiang, Hao Liu, Mai Hu, Lu Yao, Zhenyu Xu, Hao Deng et Ruifeng Kan. « Frequency-Domain Detection for Frequency-Division Multiplexing QEPAS ». Sensors 22, no 11 (26 mai 2022) : 4030. http://dx.doi.org/10.3390/s22114030.

Texte intégral
Résumé :
To achieve multi-gas measurements of quartz-enhanced photoacoustic spectroscopy (QEPAS) sensors under a frequency-division multiplexing mode with a narrow modulation frequency interval, we report a frequency-domain detection method. A CH4 absorption line at 1653.72 nm and a CO2 absorption line at 2004.02 nm were investigated in this experiment. A modulation frequency interval of as narrow as 0.6 Hz for CH4 and CO2 detection was achieved. Frequency-domain 2f signals were obtained with a resolution of 0.125 Hz using a real-time frequency analyzer. With the multiple linear regressions of the frequency-domain 2f signals of various gas mixtures, small deviations within 2.5% and good linear relationships for gas detection were observed under the frequency-division multiplexing mode. Detection limits of 0.6 ppm for CH4 and 2.9 ppm for CO2 were simultaneously obtained. With the 0.6-Hz interval, the amplitudes of QEPAS signals will increase substantially since the modulation frequencies are closer to the resonant frequency of a QTF. Furthermore, the frequency-domain detection method with a narrow interval can realize precise gas measurements of more species with more lasers operating under the frequency-division multiplexing mode. Additionally, this method, with a narrow interval of modulation frequencies, can also realize frequency-division multiplexing detection for QEPAS sensors under low pressure despite the ultra-narrow bandwidth of the QTF.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Karim. « Orthogonal Frequency Division Multiplexing Timing Synchronization in Multi-Band Orthogonal Frequency Division Multiplexing Ultra-Wideband Systems ». American Journal of Applied Sciences 7, no 3 (1 mars 2010) : 420–27. http://dx.doi.org/10.3844/ajassp.2010.420.427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhang, Xulun, Peng Sun, Lixia Xi, Zibo Zheng, Shucheng Du, Jiacheng Wei, Yue Wu et Xiaoguang Zhang. « Nonlinear-frequency-packing nonlinear frequency division multiplexing transmission ». Optics Express 28, no 10 (6 mai 2020) : 15360. http://dx.doi.org/10.1364/oe.390293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

TAKYU, O., et M. NAKAGAWA. « Frequency Spectrum Rotation in Interleaved Frequency Division Multiplexing ». IEICE Transactions on Communications E91-B, no 7 (1 juillet 2008) : 2357–65. http://dx.doi.org/10.1093/ietcom/e91-b.7.2357.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Farhan, Mhnd. « Performance Analysis of Coded Frequency Division Multiplexing ». European Journal of Engineering and Formal Sciences 2, no 3 (29 décembre 2018) : 56. http://dx.doi.org/10.26417/ejef.v2i3.p56-60.

Texte intégral
Résumé :
This paper studies the performance of coded orthogonal frequency division multiplexing system using two modulation techniques, quadrature phase shift keying(QPSK) and quadrature amplitude modulation(QAM). The convolutional code is used as error-correcting-code. The communication channel used is vehicular channel. Simulation results show that the performance of coded orthogonal frequency division multiplexing system with QPSK is better than that with QAM
Styles APA, Harvard, Vancouver, ISO, etc.
14

Farhan, Mhnd. « Performance Analysis of Coded Frequency Division Multiplexing ». European Journal of Engineering and Formal Sciences 2, no 3 (1 décembre 2018) : 56–60. http://dx.doi.org/10.2478/ejef-2018-0017.

Texte intégral
Résumé :
Abstract This paper studies the performance of coded orthogonal frequency division multiplexing system using two modulation techniques, quadrature phase shift keying(QPSK) and quadrature amplitude modulation(QAM). The convolutional code is used as error-correcting-code. The communication channel used is vehicular channel. Simulation results show that the performance of coded orthogonal frequency division multiplexing system with QPSK is better than that with QAM
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kumar, R. Saran, P. Poongodi et G. Umamaheswari. « Modeling of Orthogonal Frequency Division Multiplexing System ». Asian Journal of Research in Social Sciences and Humanities 7, no 1 (2017) : 711. http://dx.doi.org/10.5958/2249-7315.2016.01403.9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Pankil Butala, Pankil Butala, Hany Elgala Hany Elgala et Thomas D. C. Little Thomas D. C. Little. « Sample indexed spatial orthogonal frequency division multiplexing ». Chinese Optics Letters 12, no 9 (2014) : 090602–90606. http://dx.doi.org/10.3788/col201412.090602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Jin, W., et B. Culshaw. « Frequency division multiplexing of fiber-optic gyroscopes ». Journal of Lightwave Technology 10, no 10 (1992) : 1473–80. http://dx.doi.org/10.1109/50.166792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

El-Gorashi, Taisir E. H., Xiaowen Dong et Jaafar M. H. Elmirghani. « Green optical orthogonal frequency-division multiplexing networks ». IET Optoelectronics 8, no 3 (1 juin 2014) : 137–48. http://dx.doi.org/10.1049/iet-opt.2013.0046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lowery, Arthur James. « Spectrally efficient optical orthogonal frequency division multiplexing ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 378, no 2169 (2 mars 2020) : 20190180. http://dx.doi.org/10.1098/rsta.2019.0180.

Texte intégral
Résumé :
This paper charts the development of spectrally efficient forms of optical orthogonal frequency division multiplexing (OFDM) that are suited for intensity-modulated direct detection systems, such as wireless optical communications. The journey begins with systems using a DC-bias to ensure that no parts of the signal that modulates the optical source are negative in value, as negative optical intensity is unphysical. As the DC-part of the optical signal carries no information, it is wasteful in energy; thus asymmetrically clipped optical OFDM was developed, removing any negative-going peaks below the mean. Unfortunately, the clipping causes second-order distortion and intermodulation, so some subcarriers appear to be unusable, halving spectral efficiency; this is similar for unipolar and flipped optical OFDM. Thus, a considerable effort has been made to regain spectral efficiency, using layered techniques where the clipping distortion is mostly cancelled at the receiver, from a knowledge of one unpolluted layer, enabling one or more extra ‘layers/paths/depths’ to be received on the previously unusable subcarriers. Importantly, for a given optical power and high-order modulation, layered methods offer the best spectral efficiencies and need the lowest signal-to-noise ratios, especially if diversity combining is used. Thus, they could be important for high-bandwidth optical fibre systems. Efficient methods of generating all layers simultaneously, using fast Fourier transforms with their partial calculations extracted, are discussed, as are experimental demonstrations in both wireless and short-haul communications links. A musical analogy is also provided, which may point to how orchestral and rock music is deciphered in the brain. This article is part of the theme issue ‘Optical wireless communication’.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sharma, Abha, et Ajay Kr. Singh. « Orthogonal Frequency Division Multiplexing and its applications ». International Journal of Computer Trends and Technology 38, no 1 (25 août 2016) : 21–23. http://dx.doi.org/10.14445/22312803/ijctt-v38p105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ho, Keang-Po, et Joseph M. Kahn. « Frequency Diversity in Mode-Division Multiplexing Systems ». Journal of Lightwave Technology 29, no 24 (décembre 2011) : 3719–26. http://dx.doi.org/10.1109/jlt.2011.2173465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Prasad, V. G. S., et K. V. S. Hari. « Interleaved Orthogonal Frequency Division Multiplexing (IOFDM) System ». IEEE Transactions on Signal Processing 52, no 6 (juin 2004) : 1711–21. http://dx.doi.org/10.1109/tsp.2004.827179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Han, Seungyul, Youngchul Sung et Yong H. Lee. « Filter Design for Generalized Frequency-Division Multiplexing ». IEEE Transactions on Signal Processing 65, no 7 (1 avril 2017) : 1644–59. http://dx.doi.org/10.1109/tsp.2016.2641382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Gemechu, Wasyhun A., Tao Gui, Jan-Willem Goossens, Mengdi Song, Stefan Wabnitz, Hartmut Hafermann, Alan Pak Tao Lau, Mansoor I. Yousefi et Yves Jaouen. « Dual Polarization Nonlinear Frequency Division Multiplexing Transmission ». IEEE Photonics Technology Letters 30, no 18 (15 septembre 2018) : 1589–92. http://dx.doi.org/10.1109/lpt.2018.2860124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Basar, Ertugrul, Umit Aygolu, Erdal Panayirci et H. Vincent Poor. « Orthogonal Frequency Division Multiplexing With Index Modulation ». IEEE Transactions on Signal Processing 61, no 22 (novembre 2013) : 5536–49. http://dx.doi.org/10.1109/tsp.2013.2279771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Craven, M. P., K. M. Curtis et B. R. Hayes-Gill. « Frequency division multiplexing in analogue neural network ». Electronics Letters 27, no 11 (23 mai 1991) : 918–20. http://dx.doi.org/10.1049/el:19910575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Osaki, Seichiroh, Miyu Nakao, Takumi Ishihara et Shinya Sugiura. « Differentially Modulated Spectrally Efficient Frequency-Division Multiplexing ». IEEE Signal Processing Letters 26, no 7 (juillet 2019) : 1046–50. http://dx.doi.org/10.1109/lsp.2019.2918688.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jeutter, Dean C., Fabien J. Josse et James C. Han. « Cochlear implant employing frequency‐division multiplexing and frequency modulation ». Journal of the Acoustical Society of America 92, no 3 (septembre 1992) : 1796. http://dx.doi.org/10.1121/1.405274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Boute, R. « On The Equivalence of Time-Division and Frequency-Division Multiplexing ». IEEE Transactions on Communications 33, no 1 (janvier 1985) : 97–99. http://dx.doi.org/10.1109/tcom.1985.1096197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Li, Yupeng, et Ding Ding. « Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication ». Optical Engineering 56, no 09 (20 septembre 2017) : 1. http://dx.doi.org/10.1117/1.oe.56.9.096108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Nahar, Sabiqun, Md Redowan Mahmud Arnob et Mohammad Nasir Uddin. « Empirical analysis of polarization division multiplexing-dense wavelength division multiplexing hybrid multiplexing techniques for channel capacity enhancement ». International Journal of Electrical and Computer Engineering (IJECE) 13, no 1 (1 février 2023) : 590. http://dx.doi.org/10.11591/ijece.v13i1.pp590-600.

Texte intégral
Résumé :
<span>This paper exemplifies dense wavelength division multiplexing combined with polarization division multiplexing with C-band frequency range-based single-mode fiber. In the proposed link, 32 independent channels with 16 individual wavelengths are multiplexed with two different angles of polarization. Each carrying 130 Gbps dual-polarization data with 200 GHz channel spacing claiming a net transmission rate of 4.16 Tbits/s with spectral efficiency of 69% with 20% side-mode-suppression-ratio (SMSR) and optical signal to noise ratio (OSNR) 40.7. The performance of the proposed techniques has been analyzed using optimized system parameters securing a minimum bit error rate (BER) 10-9 at a transmission distance up to 50 km.</span>
Styles APA, Harvard, Vancouver, ISO, etc.
32

Solyman, Ahmad AA, Hani Attar, Mohammad R. Khosravi et Baki Koyuncu. « MIMO-OFDM/OCDM low-complexity equalization under a doubly dispersive channel in wireless sensor networks ». International Journal of Distributed Sensor Networks 16, no 6 (juin 2020) : 155014772091295. http://dx.doi.org/10.1177/1550147720912950.

Texte intégral
Résumé :
In this article, three novel systems for wireless sensor networks based on Alamouti decoding were investigated and then compared, which are Alamouti space–time block coding multiple-input single-output/multiple-input multiple-output multicarrier modulation (MCM) system, extended orthogonal space–time block coding multiple-input single-output MCM system, and multiple-input multiple-output system. Moreover, the proposed work is applied over multiple-input multiple-output systems rather than the conventional single-antenna orthogonal chirp division multiplexing systems, based on the discrete fractional cosine transform orthogonal chirp division multiplexing system to mitigate the effect of frequency-selective and time-varying channels, using low-complexity equalizers, specifically by ignoring the intercarrier interference coming from faraway subcarriers and using the LSMR iteration algorithm to decrease the equalization complexity, mainly with long orthogonal chirp division multiplexing symbols, such as the TV symbols. The block diagrams for the proposed systems are provided to simplify the theoretical analysis by making it easier to follow. Simulation results confirm that the proposed multiple-input multiple-output and multiple-input single-output orthogonal chirp division multiplexing systems outperform the conventional multiple-input multiple-output and multiple-input single-output orthogonal frequency division multiplexing systems. Finally, the results show that orthogonal chirp division multiplexing exhibited a better channel energy behavior than classical orthogonal frequency division multiplexing, thus improving the system performance and allowing the system to decrease the equalization complexity.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Uppal, Sabhyata, Sanjay Sharma et Hardeep Singh. « Analytical Investigation on Papr Reduction in OFDM Systems Using Golay Codes ». Journal of Electrical Engineering 65, no 5 (1 septembre 2014) : 289–93. http://dx.doi.org/10.2478/jee-2014-0046.

Texte intégral
Résumé :
Abstract Orthogonal frequency division multiplexing (OFDM) is a common technique in multi carrier communications. One of the major issues in developing OFDM is the high peak to average power ratio (PAPR). Golay sequences have been introduced to construct 16-QAM and 256-QAM (quadrature amplitude modulation) code for the orthogonal frequency division multiplexing (OFDM), reducing the peak-to-average power ratio. In this paper we have considered the use of coding to reduce the peakto- average power ratio (PAPR) for orthogonal frequency division multiplexing (OFDM) systems. By using QPSK Golay sequences, 16 and 256 QAM sequences with low PAPR are generated
Styles APA, Harvard, Vancouver, ISO, etc.
34

Li, Qi, Liang Hu, Jinbo Zhang, Jianping Chen et Guiling Wu. « Fiber Radio Frequency Transfer Using Bidirectional Frequency Division Multiplexing Dissemination ». IEEE Photonics Technology Letters 33, no 13 (1 juillet 2021) : 660–63. http://dx.doi.org/10.1109/lpt.2021.3086299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Moose, P. H. « A technique for orthogonal frequency division multiplexing frequency offset correction ». IEEE Transactions on Communications 42, no 10 (1994) : 2908–14. http://dx.doi.org/10.1109/26.328961.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Petrellis, Nikos. « Undersampling in Orthogonal Frequency Division Multiplexing Telecommunication Systems ». Applied Sciences 4, no 1 (17 mars 2014) : 79–98. http://dx.doi.org/10.3390/app4010079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Omran, Buthaina M., et Hajer S. Mohammed Redha. « Spectrally Efficient Frequency Division Multiplexing in LTE Downlink ». IJARCCE 5, no 1 (30 janvier 2016) : 112–15. http://dx.doi.org/10.17148/ijarcce.2016.5127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Alyatama, Anwar. « Fairness in orthogonal frequency-division multiplexing optical networks ». Journal of High Speed Networks 20, no 2 (2014) : 79–93. http://dx.doi.org/10.3233/jhs-140489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kang, Seog-Geun. « Design of 3-Dimensional Orthogonal Frequency Division Multiplexing ». Journal of Broadcast Engineering 13, no 5 (30 septembre 2008) : 677–80. http://dx.doi.org/10.5909/jbe.2008.13.5.677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Avery, James, Tom Dowrick, Anna Witkowska-Wrobel, Mayo Faulkner, Kirill Aristovich et David Holder. « Simultaneous EIT and EEG using frequency division multiplexing ». Physiological Measurement 40, no 3 (3 avril 2019) : 034007. http://dx.doi.org/10.1088/1361-6579/ab0bbc.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Yangzhang, Xianhe, Domanic Lavery, Polina Bayvel et Mansoor I. Yousefi. « Impact of Perturbations on Nonlinear Frequency-Division Multiplexing ». Journal of Lightwave Technology 36, no 2 (15 janvier 2018) : 485–94. http://dx.doi.org/10.1109/jlt.2018.2798412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wen, Miaowen, Binbin Ye, Ertugrul Basar, Qiang Li et Fei Ji. « Enhanced Orthogonal Frequency Division Multiplexing With Index Modulation ». IEEE Transactions on Wireless Communications 16, no 7 (juillet 2017) : 4786–801. http://dx.doi.org/10.1109/twc.2017.2702618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Li, Jun, Shuping Dang, Miaowen Wen, Xue-Qin Jiang, Yuyang Peng et Han Hai. « Layered Orthogonal Frequency Division Multiplexing With Index Modulation ». IEEE Systems Journal 13, no 4 (décembre 2019) : 3793–802. http://dx.doi.org/10.1109/jsyst.2019.2918068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Girinath, N. « A Novel Reconfigurable Orthogonal Frequency Division Multiplexing Transceiver ». Journal of Computational and Theoretical Nanoscience 16, no 2 (1 février 2019) : 430–35. http://dx.doi.org/10.1166/jctn.2019.7745.

Texte intégral
Résumé :
As the world moves toward 3G/4G there is a need for high data rate and relatively wide bandwidths. OFDM (Orthogonal Frequency Division Multiplexing) a form of multicarrier modulation technique is widely used to achieve high speed efficient data transmission at the rate of several Mbps. It is used in Wi-Fi standards like 802.11a, 802.11n, 802.11ac, broadcast standards like Digital Video Broadcast (DVB) and cellular telecommunications standard LTE. The main advantage of OFDM compared to single carrier modulation is their robustness to channel fading in wireless environment, high baud rates and less inter symbol interference. One major disadvantage is its High PAPR. PTS partial transmit sequences (PTS) and selective mapping are proposed to reduce it. Since FFT is core block of OFDM it must be able to adapt itself to ever changing digital world. A function specific reconfigurable 2k SDF (Single path delay feedback) FFT is proposed. It utilizes less power and can be configured for different FFT sizes ranging from 16-point to 1024-point. The validity and efficiency of the architecture have been verified by simulation in hardware description language VERILOG and targeted on Virtex-6 device. Finally PAPR is estimated by MATLAB simulation.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Barros, D. J. F., et J. M. Kahn. « Optical Modulator Optimization for Orthogonal Frequency-Division Multiplexing ». Journal of Lightwave Technology 27, no 13 (juillet 2009) : 2370–78. http://dx.doi.org/10.1109/jlt.2008.2010002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Barros, Daniel J. F., et Joseph M. Kahn. « Optimized Dispersion Compensation Using Orthogonal Frequency-Division Multiplexing ». Journal of Lightwave Technology 26, no 16 (août 2008) : 2889–98. http://dx.doi.org/10.1109/jlt.2008.925051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lu, Lidong, Yuejiang Song, Xuping Zhang et Fan Zhu. « Frequency division multiplexing OTDR with fast signal processing ». Optics & ; Laser Technology 44, no 7 (octobre 2012) : 2206–9. http://dx.doi.org/10.1016/j.optlastec.2012.02.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ozturk, Ersin, Ertugrul Basar et Hakan Ali Cirpan. « Generalized Frequency Division Multiplexing With Flexible Index Modulation ». IEEE Access 5 (2017) : 24727–46. http://dx.doi.org/10.1109/access.2017.2768401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Lin, Chundan, Mian Chen, Wansong Zhang, Jihyun Park et Jong Rak Yoon. « Reducing Intercarrier Interference for Orthogonal Frequency Division Multiplexing ». Japanese Journal of Applied Physics 49, no 7 (20 juillet 2010) : 07HG12. http://dx.doi.org/10.1143/jjap.49.07hg12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Qiao, Yuan. « Orthogonal frequency division multiplexing simulation based on MATLAB ». IOP Conference Series : Materials Science and Engineering 231 (septembre 2017) : 012054. http://dx.doi.org/10.1088/1757-899x/231/1/012054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie