Articles de revues sur le sujet « Free radical photo polymerisation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Free radical photo polymerisation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Free radical photo polymerisation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kolińska, Jolanta, Radosław Podsiadły et Jolanta Sokołowska. « Naphthoylenebenzimidazolone sensitisers for photo-oxidisable free radical polymerisation with the aid of pyridinium salts ». Coloration Technology 124, no 6 (19 décembre 2008) : 341–47. http://dx.doi.org/10.1111/j.1478-4408.2008.00161.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Garino, N., S. Zanarini, S. Bodoardo, J. R. Nair, S. Pereira, L. Pereira, R. Martins, E. Fortunato et N. Penazzi. « Fast Switching Electrochromic Devices Containing Optimized BEMA/PEGMA Gel Polymer Electrolytes ». International Journal of Electrochemistry 2013 (2013) : 1–10. http://dx.doi.org/10.1155/2013/138753.

Texte intégral
Résumé :
An optimized thermoset gel polymer electrolyte based on Bisphenol A ethoxylate dimethacrylate and Poly(ethylene glycol) methyl ether methacrylate (BEMA/PEGMA) was prepared by facile photo-induced free radical polymerisation technique and tested for the first time in electrochromic devices (ECD) combining WO3sputtered on ITO as cathodes and V2O5electrodeposited on ITO as anodes. The behaviour of the prepared ECD was investigated electrochemically and electro-optically. The ECD transmission spectrum was monitored in the visible and near-infrared region by varying applied potential. A switching time of ca. 2 s for Li+insertion (coloring) and of ca. 1 s for Li+de-insertion (bleaching) were found. UV-VIS spectroelectrochemical measurements evidenced a considerable contrast between bleached and colored state along with a good stability over repeated cycles. The reported electrochromic devices showed a considerable enhancement of switching time with respect to the previously reported polymeric ECD indicating that they are good candidates for the implementation of intelligent windows and smart displays.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Borg, Stefan, Sing Kiong Nguang et Xiao Dong Chen. « H∞ control of free-radical polymerisation reactors ». ISA Transactions 40, no 1 (janvier 2001) : 73–84. http://dx.doi.org/10.1016/s0019-0578(00)00030-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Smith, D. G. « Non-ideal kinetics in free-radical polymerisation ». Journal of Applied Chemistry 17, no 12 (4 mai 2007) : 339–43. http://dx.doi.org/10.1002/jctb.5010171201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nikolaou, Vasiliki, Athina Anastasaki, Fehaid Alsubaie, Alexandre Simula, David J. Fox et David M. Haddleton. « Copper(ii) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates ». Polymer Chemistry 6, no 19 (2015) : 3581–85. http://dx.doi.org/10.1039/c5py00406c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Low, Kaycee, Luke Wylie, David L. A. Scarborough et Ekaterina I. Izgorodina. « Is it possible to control kinetic rates of radical polymerisation in ionic liquids ? » Chemical Communications 54, no 80 (2018) : 11226–43. http://dx.doi.org/10.1039/c8cc02012d.

Texte intégral
Résumé :
This work predicted propagation rates of free radical polymerisation in clusters of ionic liquids: stabilisation of the propagating radical and deactivation of the monomer were found to be the main factors in controlling kinetic rates, allowing for controlled free radical polymerisation in ionic liquids.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Royles, Brodyck J. L., et David C. Sherrington. « Transition metal complex-templated asymmetric free radical polymerisation ». Chemical Communications, no 3 (1998) : 421–23. http://dx.doi.org/10.1039/a708059j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Noble, Benjamin B., et Michelle L. Coote. « First principles modelling of free-radical polymerisation kinetics ». International Reviews in Physical Chemistry 32, no 3 (septembre 2013) : 467–513. http://dx.doi.org/10.1080/0144235x.2013.797277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Nikolaou, Vasiliki, Athina Anastasaki, Fehaid Alsubaie, Alexandre Simula, David J. Fox et David M. Haddleton. « Correction : Copper(ii) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates ». Polymer Chemistry 8, no 47 (2017) : 7417. http://dx.doi.org/10.1039/c7py90190a.

Texte intégral
Résumé :
Correction for ‘Copper(ii) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates’ by Vasiliki Nikolaou et al., Polym. Chem., 2015, 6, 3581–3585.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nurumbetov, Gabit, Nikolaos Engelis, Jamie Godfrey, Rachel Hand, Athina Anastasaki, Alexandre Simula, Vasiliki Nikolaou et David M. Haddleton. « Methacrylic block copolymers by sulfur free RAFT (SF RAFT) free radical emulsion polymerisation ». Polymer Chemistry 8, no 6 (2017) : 1084–94. http://dx.doi.org/10.1039/c6py02038k.

Texte intégral
Résumé :
We demonstrate the use of sulfur free reversible addition–fragmentation chain transfer polymerisation (RAFT) as a versatile tool for the controlled synthesis of methacrylic block and comb-like copolymers.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Polo, Eleonora, Andrea Barbieri, Silvana Sostero et Malcolm L. H. Green. « Zirconocenes as Photoinitiators for Free-Radical Polymerisation of Acrylates ». European Journal of Inorganic Chemistry 2002, no 2 (février 2002) : 405–9. http://dx.doi.org/10.1002/1099-0682(20022)2002:2<405 ::aid-ejic405>3.0.co;2-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zetterlund, Per B., et Anthony F. Johnson. « Free volume-based modelling of free radical crosslinking polymerisation of unsaturated polyesters ». Polymer 43, no 7 (mars 2002) : 2039–48. http://dx.doi.org/10.1016/s0032-3861(01)00789-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wang, Dehong, Long Zhang et Sanzhong Luo. « Photo-induced Catalytic Asymmetric Free Radical Reactions ». Acta Chimica Sinica 75, no 1 (2017) : 22. http://dx.doi.org/10.6023/a16080418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhang, Liming, Lin Zhou, Mingmei Yang, Zhirong Liu, Qin Xie, Hailin Peng et Zhongfan Liu. « Photo-induced Free Radical Modification of Graphene ». Small 9, no 8 (20 mars 2013) : 1134–43. http://dx.doi.org/10.1002/smll.201203152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Irvine, S. J. C., et J. B. Mullin. « The free radical mechanism for photo-epitaxy ». Journal of Crystal Growth 79, no 1-3 (décembre 1986) : 371–77. http://dx.doi.org/10.1016/0022-0248(86)90463-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Dhib, R., et N. Al-Nidawy. « Modelling of free radical polymerisation of ethylene using difunctional initiators ». Chemical Engineering Science 57, no 14 (juillet 2002) : 2735–46. http://dx.doi.org/10.1016/s0009-2509(02)00156-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Stewart, David, et Corrie T. Imrie. « Role of C60 in the free radical polymerisation of styrene ». Chemical Communications, no 11 (1996) : 1383. http://dx.doi.org/10.1039/cc9960001383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tarnacka, Magdalena, Paulina Maksym, Andrzej Zięba, Anna Mielańczyk, Monika Geppert-Rybczyńska, Laia Leon-Boigues, Carmen Mijangos, Kamil Kamiński et Marian Paluch. « The application of spatially restricted geometries as a unique route to produce well-defined poly(vinyl pyrrolidones) via free radical polymerisation ». Chemical Communications 55, no 45 (2019) : 6441–44. http://dx.doi.org/10.1039/c9cc02625h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Chandra, R., B. P. Thapliyal, Babita Sehgal et R. K. Soni. « Studies on the kinetics of photo-initiated radical polymerisation of modified epoxy resin ». Polymer International 29, no 3 (1992) : 185–90. http://dx.doi.org/10.1002/pi.4990290306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Cassin, Savannah R., Sean Flynn, Pierre Chambon et Steve P. Rannard. « Accessing new and scalable high molecular weight branched copolymer structures using transfer-dominated branching radical telomerisation (TBRT) ». Polymer Chemistry 13, no 16 (2022) : 2295–306. http://dx.doi.org/10.1039/d2py00174h.

Texte intégral
Résumé :
Three new synthesis strategies for branched statistical copolymers containing analogues of step-growth backbones are shown using free radical chemistries and transfer-dominated branching radical polymerisation (TBRT) conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Brocken, Laurens, Paul D. Price, Jane Whittaker et Ian R. Baxendale. « Continuous flow synthesis of poly(acrylic acid) via free radical polymerisation ». Reaction Chemistry & ; Engineering 2, no 5 (2017) : 662–68. http://dx.doi.org/10.1039/c7re00063d.

Texte intégral
Résumé :
The free radical polymerisation of aqueous solutions of acrylic acid (1) has been studied using a continuous flow reactor to quickly screen reaction parameters such as temperature, residence time, monomer- and initiator concentration.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Janovský, Igor, Sergej Naumov, Wolfgang Knolle et Reiner Mehnert. « Radiation-induced polymerisation of 2,3-dihydrofuran : free-radical or cationic mechanism ? » Radiation Physics and Chemistry 72, no 2-3 (février 2005) : 125–33. http://dx.doi.org/10.1016/j.radphyschem.2004.09.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Sammaljärvi, Juuso, Mallikarjuna Shroff Rama, Jussi Ikonen, Eveliina Muuri, Karl-Heinz Hellmuth et Marja Siitari-Kauppi. « Free radical polymerisation of methacrylates with thermal initiator in clay rock ». Engineering Geology 210 (août 2016) : 70–83. http://dx.doi.org/10.1016/j.enggeo.2016.06.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Pullen, Graeme K., Norman S. Allen, Michele Edge, Iain Weddell, Ron Swart, Ferando Catalina et S. Navaratnam. « Anthraquinone photoinitiators for free radical polymerisation : Structure dependence on photopolymerisation activity ». European Polymer Journal 32, no 8 (août 1996) : 943–55. http://dx.doi.org/10.1016/0014-3057(96)00035-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Vicevic, M., K. Novakovic, K. V. K. Boodhoo et A. J. Morris. « Kinetics of styrene free radical polymerisation in the spinning disc reactor ». Chemical Engineering Journal 135, no 1-2 (janvier 2008) : 78–82. http://dx.doi.org/10.1016/j.cej.2007.05.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Mizutsu, Ryo, Ryosuke Asato, Colin J. Martin, Mihoko Yamada, Yoshiko Nishikawa, Shohei Katao, Miku Yamada, Takuya Nakashima et Tsuyoshi Kawai. « Photo-Lewis Acid Generator Based on Radical-Free 6π Photo-Cyclization Reaction ». Journal of the American Chemical Society 141, no 51 (8 décembre 2019) : 20043–47. http://dx.doi.org/10.1021/jacs.9b11821.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Back, Jong-Ho, Yonghwan Kwon, Juan Carlos Roldao, Youngchang Yu, Hyun-Joong Kim, Johannes Gierschner, Wonjoo Lee et Min Sang Kwon. « Synthesis of solvent-free acrylic pressure-sensitive adhesives via visible-light-driven photocatalytic radical polymerization without additives ». Green Chemistry 22, no 23 (2020) : 8289–97. http://dx.doi.org/10.1039/d0gc02807j.

Texte intégral
Résumé :
Solvent-free acrylic pressure-sensitive adhesives were prepared via visible-light driven photocatalytic free radical polymerization. Combined experiments and quantum calculations divulged the origin of the enhanced rate of polymerisation in the presence of N-vinyl monomers.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wang, Lei, Gareth R. Williams, Hua-li Nie, Jing Quan et Li-min Zhu. « Electrospun glycopolymer fibers for lectin recognition ». Polym. Chem. 5, no 8 (2014) : 3009–17. http://dx.doi.org/10.1039/c3py01332d.

Texte intégral
Résumé :
Thermoresponsive glycopolymers have been prepared by a free radical polymerisation process, and subsequently processed into blended fibers with poly-l-lactide-co-ε-caprolactone (PLCL) using electrospinning.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Xie, Haochen, Saurabh Basu et Edward C. DeMeter. « Molecular Dynamics Simulations of Photo-Induced Free Radical Polymerization ». Journal of Chemical Information and Modeling 60, no 12 (1 décembre 2020) : 6314–27. http://dx.doi.org/10.1021/acs.jcim.0c01156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Podsiadły, Radosław, Jolanta Kolińska et Jolanta Sokołowska. « Study of free radical polymerisation with dye photoinitiators containing a naphthoylenebenzimidazolone skeleton ». Coloration Technology 124, no 2 (avril 2008) : 79–85. http://dx.doi.org/10.1111/j.1478-4408.2008.00125.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hoppe, S., et A. Renken. « Modelling of the Free Radical Polymerisation of Methylmethacrylate up to High Temperature ». Polymer Reaction Engineering 6, no 1 (janvier 1998) : 1–39. http://dx.doi.org/10.1080/10543414.1998.10744481.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Abrol, S., M. J. Caulfield, G. G. Qiao et D. H. Solomon. « Studies on microgels. 5. Synthesis of microgels via living free radical polymerisation ». Polymer 42, no 14 (juin 2001) : 5987–91. http://dx.doi.org/10.1016/s0032-3861(01)00023-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Tonge, Matthew P., Atsushi Kajiwara, Mikiharu Kamachi et Robert G. Gilbert. « E.s.r. measurements of the propagation rate coefficient for styrene free radical polymerisation ». Polymer 39, no 11 (janvier 1998) : 2305–13. http://dx.doi.org/10.1016/s0032-3861(97)00507-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

von Sonntag, Justus, Igor Janovský, Sergej Naumov et Reiner Mehnert. « Initiation of Free Radical N-Alkylmaleimide Polymerisation by Monomer Radical Cations. A Low Temperature EPR Study ». Macromolecular Chemistry and Physics 202, no 8 (1 mai 2001) : 1355–60. http://dx.doi.org/10.1002/1521-3935(20010501)202:8<1355 ::aid-macp1355>3.0.co;2-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhang, Li Juan, Chen Bo Wu, Fei Yang, Xiao Yi Geng, Meng Qian Li et Ji Jun Xiao. « Preparation and Characterization of UV Curable Hybrid System Based on Free Radical and Cationic Mechanism ». Applied Mechanics and Materials 470 (décembre 2013) : 141–45. http://dx.doi.org/10.4028/www.scientific.net/amm.470.141.

Texte intégral
Résumé :
A UV curable hybrid system with a dual mechanism of radical and cationic photo-polymerization, was investigated. A kind of free radical oligomer with low viscosity named hexahydrophthalic acid diglycidyl acrylate was first synthesized. The structure of the oligomer was characterization by FTIR. The UV curing processing of hybrid system was traced by real-time FTIR, and compared with free radical, cationic system. Thermal decomposition temperature and glass transition temperature of UV curing film for various system were determined by thermogravimetric analysis (TGA) and differental scanning calorimetry (DSC), respectively. And physical and mechanical properties of those curing films were analyzed and compared. The results show that the radical polymerization of double bond and cationic polymerization of epoxy group could occur simultaneously in hybrid system. The conversion rate of epoxy group for hybrid system was higher than that of epoxy group for cationic system, which demonstrated that the cationic photo-initiator (DPI·PF6) can be sensitized by the free radical photo-initiator (Irgacure 184). Compared with free radical and cationic system, the hardness and mechanical properties of hybrid system curing film were better than those of the cationic system curing film, while closed to those of free radical system.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Satapathy, H., et A. K. Banthia. « Poly (4‐nonylphenyl methacrylate) : synthesis, characterisation and radical polymerisation kinetics study ». Pigment & ; Resin Technology 37, no 1 (11 janvier 2008) : 21–27. http://dx.doi.org/10.1108/03699420810839675.

Texte intégral
Résumé :
PurposeThe purpose of this paper is to synthesise, characterise and study polymerisation kinetics of novel 4‐nonylphenylmethacrylate (NPMA) polymer.Design/methodology/approachNew methacrylic monomer, 4‐NPMA with a pendant nonylphenyl group was synthesised and characterised using various characterisation techniques. The free radical polymerisation kinetics study was done with the help of differential scanning calorimetry data.FindingsThe average heat of polymerisation (ΔHp) was found to be 685.43 J/g. Activation energy (Ea) of 95.86 kJ mol−1 and frequency factor of (A) 3.4 × 104 min−1 was obtained using Kissinger method. The thermogravimetric analysis of the polymer in nitrogen reveals that it possesses very good thermal stability in comparison to alkyl methacrylates due to presence of pendant nonylphenyl group.Research limitations/implicationsNew methacrylic monomer, 4‐NPMA was synthesised by reacting nonylphenol dissolved in methyl ethyl ketone (MEK) with methacryloyl chloride in the presence of triethylamine as a base. Polymerisation of 4‐NPMA was carried out in MEK using benzoyl peroxide (BPO) as initiator under nitrogen atmosphere. The kinetics study of NPMA monomer with 1.1 wt% BPO was reported for evaluation of kinetic parameters by employing the Kissinger equation.Practical implicationsThis is a simple and easy method of modification of methacrylate ester with phenyl groups to obtain a polymer of enhanced properties.Originality/valueThis is a novel method for enhancing the thermal as well as surface adhesion properties of methacrylate polymers which finds several applications in surface coatings and adhesives.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Boulding, Natasha A., Jonathan M. Millican et Lian R. Hutchings. « Understanding copolymerisation kinetics for the design of functional copolymers via free radical polymerisation ». Polymer Chemistry 10, no 41 (2019) : 5665–75. http://dx.doi.org/10.1039/c9py01294j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kütahya, Ceren, Yingxiang Zhai, Shujun Li, Shouxin Liu, Jian Li, Veronika Strehmel, Zhijun Chen et Bernd Strehmel. « Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo‐ATRP and Photo‐CuAAC Chemistry ». Angewandte Chemie International Edition 60, no 19 (17 mars 2021) : 10983–91. http://dx.doi.org/10.1002/anie.202015677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ghani, Mohmad Asri Abd, Dalia Abdallah, Peter M. Kazmaier, Barkev Keoshkerian et Erwin Buncel. « Multi-armed, TEMPO-functionalized unimolecular initiators for starburst dendrimer synthesis via stable free radical polymerisation. 2. Tris (1,3,5)benzyloxy unimers ». Canadian Journal of Chemistry 82, no 9 (1 septembre 2004) : 1403–12. http://dx.doi.org/10.1139/v04-106.

Texte intégral
Résumé :
The synthesis of the trifunctionalized TEMPO-modified unimolecular initiators, unimers I, II, and III is described. Unimer I was prepared via an SN2 type Williamson ether coupling of 1,3,5-tris(iodomethyl)benzene with a TEMPO-containing ethylbenzene hydroxy derivative. The synthesis of unimer II, however, was accomplished through SN1 reaction of 1,3,5-tris(bromomethyl)benzene with the hydroxy-ethylbenzene TEMPO derivative in the presence of silver triflate. Synthesis of unimer III started from phloroglucinol and an SNAr reaction with 1-fluoro-4-nitrobenzene, followed by reduction to the amino compound and Schiff base formation with the TEMPO-derivatized aromatic aldehyde. Stable free radical polymerisation (SFRP) of styrene and acetoxystyrene with unimer I are also described with molecular weights and polydispersities reported. It is concluded that the SFRP of styrene with a triradical initiator meets the requirements of a living system.Key words: stable free radical polymerisation, starburst dendrimer, multi-armed unimolecular initiators.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Puttick, Simon, Derek J. Irvine, Peter Licence et Kristofer J. Thurecht. « RAFT-functional ionic liquids : towards understanding controlled free radical polymerisation in ionic liquids ». Journal of Materials Chemistry 19, no 18 (2009) : 2679. http://dx.doi.org/10.1039/b817181p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Chessa, G., A. Scrivanti, U. Matteoli et V. Castelvetro. « Synthesis of three- and six-arms polystyrene via living/controlled free radical polymerisation ». Polymer 42, no 23 (novembre 2001) : 9347–53. http://dx.doi.org/10.1016/s0032-3861(01)00482-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sammaljärvi, Juuso, Lalli Jokelainen, Jussi Ikonen et Marja Siitari-Kauppi. « Free radical polymerisation of MMA with thermal initiator in brick and Grimsel granodiorite ». Engineering Geology 135-136 (mai 2012) : 52–59. http://dx.doi.org/10.1016/j.enggeo.2012.03.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Prajapati, Kiran, et Anuradha Varshney. « Free Radical Polymerisation of Methylmethacrylate Using p-nitrobenzyltriphenyl Phosphonium Ylide as Novel Initiator ». Journal of Polymer Research 13, no 2 (29 octobre 2005) : 97–105. http://dx.doi.org/10.1007/s10965-005-9011-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Chen, Xianyi, Bo Gao, Jørgen Kops et Walther Batsberg. « Preparation of polystyrene-poly(ethylene glycol) diblock copolymer by ‘living’ free radical polymerisation ». Polymer 39, no 4 (février 1998) : 911–15. http://dx.doi.org/10.1016/s0032-3861(97)00341-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Espino-Pérez, E., Robert G. Gilbert, S. Domenek, M. C. Brochier-Salon, M. N. Belgacem et J. Bras. « Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis ». Carbohydrate Polymers 135 (janvier 2016) : 256–66. http://dx.doi.org/10.1016/j.carbpol.2015.09.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Xu, Xinmeng, Xiang Xu, Yanning Zeng et Faai Zhang. « Oxygen-tolerant photo-induced metal-free atom transfer radical polymerization ». Journal of Photochemistry and Photobiology A : Chemistry 411 (avril 2021) : 113191. http://dx.doi.org/10.1016/j.jphotochem.2021.113191.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Xu, Kui, Bing Yu, Yuanyuan Li, Huifang Su, Bingnan Wang, Kai Sun, Yuanyuan Liu, Qiuchen Peng, Hongwei Hou et Kai Li. « Photo-induced free radical production in a tetraphenylethylene ligand-based metal–organic framework ». Chemical Communications 54, no 92 (2018) : 12942–45. http://dx.doi.org/10.1039/c8cc06662k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Tan, Shereen, Edgar H. H. Wong, Qiang Fu, Jing M. Ren, Adrian Sulistio, Katharina Ladewig, Anton Blencowe et Greg G. Qiao. « Azobenzene-Functionalised Core Cross-Linked Star Polymers and their Host–Guest Interactions ». Australian Journal of Chemistry 67, no 1 (2014) : 173. http://dx.doi.org/10.1071/ch13425.

Texte intégral
Résumé :
Water-soluble poly(2-hydroxyethyl acrylate) (PHEA)-based core cross-linked star polymers were efficiently synthesised with high macroinitiator-to-star-conversion (>95 %) in a one-pot system via single electron transfer-living radical polymerisation. The star polymers display excellent water solubility and the pendant hydroxyl groups provide a platform for facile post-functionalisation with various molecules. In demonstrating this, a photo-isomerisable molecule, 4-(phenylazo)benzoic acid was conjugated onto the preformed stars through partial esterification of the available hydroxyl groups (5–20 %). The azobenzene functionalised stars were subsequently employed to form reversible inclusion complexes with α-cyclodextrin.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Li, Kebin, Javier Alejandro Hernández-Castro, Keith Morton et Teodor Veres. « Facile Fabrication of Flexible Polymeric Membranes with Micro and Nano Apertures over Large Areas ». Polymers 14, no 19 (9 octobre 2022) : 4228. http://dx.doi.org/10.3390/polym14194228.

Texte intégral
Résumé :
Freestanding, flexible and open through-hole polymeric micro- and nanostructured membranes were successfully fabricated over large areas (>16 cm2) via solvent removal of sacrificial scaffolds filled with polymer resin by spontaneous capillary flow. Most of the polymeric membranes were obtained through a rapid UV curing processes via cationic or free radical UV polymerisation. Free standing microstructured membranes were fabricated across a range of curable polymer materials, including: EBECRYL3708 (radical UV polymerisation), CUVR1534 (cationic UV polymerisation) UV lacquer, fluorinated perfluoropolyether urethane methacrylate UV resin (MD700), optical adhesive UV resin with high refractive index (NOA84) and medical adhesive UV resin (1161-M). The present method was also extended to make a thermal set polydimethylsiloxane (PDMS) membranes. The pore sizes for the as-fabricated membranes ranged from 100 µm down to 200 nm and membrane thickness could be varied from 100 µm down to 10 µm. Aspect ratios as high as 16.7 were achieved for the 100 µm thick membranes for pore diameters of approximately 6 µm. Wide-area and uniform, open through-hole 30 µm thick membranes with 15 µm pore size were fabricated over 44 × 44 mm2 areas. As an application example, arrays of Au nanodots and Pd nanodots, as small as 130 nm, were deposited on Si substrates using a nanoaperture polymer through-hole membrane as a stencil.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Royles, Brodyck J. L., et David C. Sherrington. « Mainchain optically active vinyl copolymers via transition metal complex-templated asymmetric free radical polymerisation ». Journal of Materials Chemistry 10, no 9 (2000) : 2035–41. http://dx.doi.org/10.1039/b003007o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie