Articles de revues sur le sujet « Fractional spin »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Fractional spin.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Fractional spin ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Samuel, Joseph. « Fractional spin from gravity ». Physical Review Letters 71, no 2 (12 juillet 1993) : 215–18. http://dx.doi.org/10.1103/physrevlett.71.215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Genest, Vincent X., Luc Vinet et Alexei Zhedanov. « Exact fractional revival in spin chains ». Modern Physics Letters B 30, no 26 (30 septembre 2016) : 1650315. http://dx.doi.org/10.1142/s0217984916503152.

Texte intégral
Résumé :
The occurrence of fractional revival in quantum spin chains is examined. Analytic models where this phenomenon can be exhibited in exact solutions are provided. It is explained that spin chains with fractional revival can be obtained by isospectral deformations of spin chains with perfect state transfer.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liang, J. Q., et X. X. Ding. « New model of fractional spin ». Physical Review Letters 63, no 8 (21 août 1989) : 831–33. http://dx.doi.org/10.1103/physrevlett.63.831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nobre, F. A. S., et C. A. S. Almeida. « Pauli's term and fractional spin ». Physics Letters B 455, no 1-4 (mai 1999) : 213–16. http://dx.doi.org/10.1016/s0370-2693(99)00475-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Plyushchay, M. S. « Fractional spin. Majorana-Dirac field ». Physics Letters B 273, no 3 (décembre 1991) : 250–54. http://dx.doi.org/10.1016/0370-2693(91)91679-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Roy, Ashim Kumar. « Topological Invariance of Fractional Spin of the Abelian CSH Vortex ». International Journal of Modern Physics A 12, no 13 (20 mai 1997) : 2343–59. http://dx.doi.org/10.1142/s0217751x97001365.

Texte intégral
Résumé :
The Abelian Chern–Simons–Higgs model in 2 + 1 dimensions exhibit vortex solutions with fractional spin. Although it is known that the normal, underformed charged vortex has a fractional spin related to its topological charge, it is not clear whether the value of this fractional spin is stable under changes in gauge-fixing conditions and regular deformations of the vortex field configurations. Recently, some authors have reported about the gauge as well as shape dependence of the fractional spin for the CSH vortex, which is contrary to our usual belief. However, their analysis is inconsistent and calls for a careful scrutiny. An explicit analysis is presented in this paper to show that the fractional spin for the Abelian CSH charged vortex may indeed be taken to be a gauge (small) and shape independent and hence, a topologically invariant quantity. The subtle points missed out by the other authors leading to inconsistency and the contradictory result are discussed in all essential details to resolve the issue.
Styles APA, Harvard, Vancouver, ISO, etc.
7

ROY, ASHIM KUMAR. « GAUGE AND SHAPE INDEPENDENCE OF FRACTIONAL SPIN OF DEFORMED SOLITONS IN THE (2+1)-DIMENSIONAL O(3) σ MODEL ». International Journal of Modern Physics A 11, no 04 (10 février 1996) : 759–75. http://dx.doi.org/10.1142/s0217751x96000353.

Texte intégral
Résumé :
The O(3) nonlinear σ model with the Hopf term and with a Chern–Simons gauge coupling in 2+1 dimensions is considered for an understanding of the soliton shape and gauge dependence of the fractional spin and statistics exhibited by the particle-like solutions. Some explicit forms of the shape-defining (for the deformed solitons of these models) functions and the adiabatic time-dependent function are used to assess the fractional spin. In two different gauges, a proper and explicit analysis shows that the fractional spin is a truly gauge- as well as shape-independent entity. This demonstrates that the fractional spin of solitons in the O(3) σ model is a topologically invariant quantity — a fact which has been put in doubt by some authors.
Styles APA, Harvard, Vancouver, ISO, etc.
8

FORTE, STEFANO. « RELATIVISTIC PARTICLES WITH FRACTIONAL SPIN AND STATISTICS ». International Journal of Modern Physics A 07, no 05 (20 février 1992) : 1025–57. http://dx.doi.org/10.1142/s0217751x92000466.

Texte intégral
Résumé :
We develop the relativistic quantum mechanics of particles with fractional spin and statistics in 2 + 1 dimensions in the path-integral approach. We endow the elementary excitations of the theory with fractional spin through the coupling of the particle number current with a topological term. We work out the dynamics of the spin degrees of freedom, and display the relation between the spin action and the knot invariants of the paths contributing to the path integral. We show that the explicit spin-changing interaction can be traded for multivaluedness of the wave function, and we relate this to the representation theory of the Lorentz and Poincaré groups in 2 + 1 dimensions. We discuss the multiparticle dynamics and derive the spin–statistics theorem.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Su, Neil Qiang, Chen Li et Weitao Yang. « Describing strong correlation with fractional-spin correction in density functional theory ». Proceedings of the National Academy of Sciences 115, no 39 (10 septembre 2018) : 9678–83. http://dx.doi.org/10.1073/pnas.1807095115.

Texte intégral
Résumé :
An effective fractional-spin correction is developed to describe static/strong correlation in density functional theory. Combined with the fractional-charge correction from recently developed localized orbital scaling correction (LOSC), a functional, the fractional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction to commonly used functional approximations, introduces the explicit derivative discontinuity and largely restores the flat-plane behavior of electronic energy at fractional charges and fractional spins. In addition to improving results from conventional functionals for the prediction of ionization potentials, electron affinities, quasiparticle spectra, and reaction barrier heights, FSLOSC properly describes the dissociation of ionic species, single bonds, and multiple bonds without breaking space or spin symmetry and corrects the spurious fractional-charge dissociation of heteroatom molecules of conventional functionals. Thus, FSLOSC demonstrates success in reducing delocalization error and including strong correlation, within low-cost density functional approximation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

LIU, YONG-KAI, et SHI-JIE YANG. « FRACTIONAL WINDINGS OF THE SPINOR CONDENSATES ON A RING ». International Journal of Modern Physics B 27, no 16 (7 juin 2013) : 1350070. http://dx.doi.org/10.1142/s0217979213500707.

Texte intégral
Résumé :
We study the uniform solutions to the one-dimensional (1D) spinor Bose–Einstein condensates on a ring. These states explicitly display the associated motion of the super-current and the spin rotation, which give rise to fractional winding numbers according to the various compositions of the hyperfine states. It simultaneously yields a fractional factor to the global phase due to the spin-gauge symmetry. All fractional windings can be denoted as nk/(m+n), with nk<m+n<2F, for arbitrary spin-F Bose–Einstein condensation (BEC). Our method can be applied to explore the fractional vortices by identifying the ring as the boundary of two-dimensional (2D) spinor condensates.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Výborný, K. « Spin in fractional quantum Hall systems ». Annalen der Physik 519, no 2 (25 janvier 2007) : 87–165. http://dx.doi.org/10.1002/andp.20075190201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Hagen, C. R. « Fractional spin and the Pauli term ». Physics Letters B 470, no 1-4 (décembre 1999) : 119–20. http://dx.doi.org/10.1016/s0370-2693(99)01330-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Genest, Vincent X., Luc Vinet et Alexei Zhedanov. « Quantum spin chains with fractional revival ». Annals of Physics 371 (août 2016) : 348–67. http://dx.doi.org/10.1016/j.aop.2016.05.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Výborný, K. « Spin in fractional quantum Hall systems ». Annalen der Physik 16, no 2 (16 février 2007) : 87–165. http://dx.doi.org/10.1002/andp.200610228.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kay, Alastair. « Tailoring spin chain dynamics for fractional revivals ». Quantum 1 (10 août 2017) : 24. http://dx.doi.org/10.22331/q-2017-08-10-24.

Texte intégral
Résumé :
The production of quantum states required for use in quantum protocols & technologies is studied by developing the tools to re-engineer a perfect state transfer spin chain so that a separable input excitation is output over multiple sites. We concentrate in particular on cases where the excitation is superposed over a small subset of the qubits on the spin chain, known as fractional revivals, demonstrating that spin chains are capable of producing a far greater range of fractional revivals than previously known, at high speed. We also provide a numerical technique for generating chains that produce arbitrary single-excitation states, such as the W state.
Styles APA, Harvard, Vancouver, ISO, etc.
16

HANSSON, T. H., et A. KARLHEDE. « DUALITY FOR ANYONS ». Modern Physics Letters B 03, no 11 (20 juillet 1989) : 887. http://dx.doi.org/10.1142/s0217984989001382.

Texte intégral
Résumé :
We study the Nielsen-Olesen vortices in the three dimensional noncompact Abelian Higgs model with a Chern-Simons term. The vortices are fractionally charged anyons (i.e., particles with fractional spin and statistics). In a certain limit we can express the theory in terms of these topological excitations by performing a duality transformation on the lattice. The result is a topologically conserved current describing the vortices, minimally coupled to a dynamical gauge field with a Chern-Simons term. Spin, statistics and size of the excitations are all preserved under this transformation.
Styles APA, Harvard, Vancouver, ISO, etc.
17

HANSSON, T. H., et A. KARLHEDE. « DUALITY FOR ANYONS ». Modern Physics Letters A 04, no 20 (10 octobre 1989) : 1937–43. http://dx.doi.org/10.1142/s0217732389002197.

Texte intégral
Résumé :
We study the Nielsen-Olesen vortices in the three dimensional noncompact Abelian Higgs model with a Chern-Simons term. The vortices are fractionally charged anyons (i.e., particles with fractional spin and statistics). In a certain limit we can express the theory in terms of these topological excitations by performing a duality transformation on the lattice. The result is a topologically conserved current describing the vortices, minimally coupled to a dynamical gauge field with a Chern-Simons term. Spin, statistics and size of the excitations are all preserved under this transformation.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Stevenson, Catherine J., et Jordan Kyriakidis. « Fractional orbital occupation of spin and charge in artificial atoms ». Canadian Journal of Physics 89, no 2 (février 2011) : 213–17. http://dx.doi.org/10.1139/p10-108.

Texte intégral
Résumé :
We present results on spin and charge correlations in two-dimensional quantum dots as a function of increasing Coulomb strength (dielectric constant). We look specifically at the orbital occupation of both spin and charge. We find that charge and spin evolve separately, especially at low Coulomb strength. For the charge, we find that a hole develops in the core orbitals at strong Coulomb repulsion, invalidating the common segregation of confined electrons into an inert core and active valence electrons. For excitations, we find a total spin-projection Sz = –1/2 breaks apart into separate occupations of net positive and negative spin. This dissociation is caused by spin correlations alone. Quantum fluctuations arising from long-range Coulomb repulsion destroy the spin dissociation and eventually results in all orbitals carrying a negative spin.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lan, Yuanpei, et Shaolong Wan. « Fractional charge and statistics in the fractional quantum spin Hall effect ». Journal of Physics : Condensed Matter 24, no 16 (30 mars 2012) : 165503. http://dx.doi.org/10.1088/0953-8984/24/16/165503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

FORTE, STEFANO. « BERRY'S PHASE, FRACTIONAL STATISTICS AND THE LAUGHLIN WAVE FUNCTION ». Modern Physics Letters A 06, no 34 (10 novembre 1991) : 3153–62. http://dx.doi.org/10.1142/s021773239100364x.

Texte intégral
Résumé :
We determine the path-integral for particles with fractional spin and statistics in the adiabatic limit, and we discuss the identification of the spin-changing term with a Berry phase. We show that the standard proof that the Laughlin wave function describes excitations with fractional statistics holds only on the basis of a tacit assumption of questionable validity.
Styles APA, Harvard, Vancouver, ISO, etc.
21

VÝBORNÝ, KAREL, et DANIELA PFANNKUCHE. « SPIN STRUCTURES IN INHOMOGENEOUS FRACTIONAL QUANTUM HALL SYSTEMS ». International Journal of Modern Physics B 18, no 27n29 (30 novembre 2004) : 3871–74. http://dx.doi.org/10.1142/s0217979204027621.

Texte intégral
Résumé :
Transitions between spin polarized and spin singlet incompressible ground state of quantum Hall systems at filling factor 2/3 are studied by means of exact diagonalization with eight electrons. We observe a stable exactly half–polarized state becoming the absolute ground state around the transition point. This might be a candidate for the anomaly observed during the transition in optical experiments. The state reacts strongly to magnetic inhomogeneities but it prefers stripe–like spin structures to formation of domains.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sasaki, Shosuke. « Spin-Peierls effect in spin-polarization of fractional quantum Hall states ». Surface Science 566-568 (septembre 2004) : 1040–46. http://dx.doi.org/10.1016/j.susc.2004.06.101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Aharonov, Y., C. K. Au et L. Vaidman. « Comment on ‘‘New model of fractional spin’’ ». Physical Review Letters 66, no 12 (25 mars 1991) : 1638–39. http://dx.doi.org/10.1103/physrevlett.66.1638.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Xie, X. C., Yin Guo et F. C. Zhang. « Fractional quantum Hall effect with spin reversal ». Physical Review B 40, no 5 (15 août 1989) : 3487–90. http://dx.doi.org/10.1103/physrevb.40.3487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Clark, Robert, et Peter Maksym. « Fractional quantum Hall effect in a spin ». Physics World 2, no 9 (septembre 1989) : 39–46. http://dx.doi.org/10.1088/2058-7058/2/9/23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Fukui, Takahiro, Norio Kawakami et Sung-Kil Yang. « Higher-Spin Generalization of Fractional Exclusion Statistics ». Journal of the Physical Society of Japan 65, no 6 (15 juin 1996) : 1617–21. http://dx.doi.org/10.1143/jpsj.65.1617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sasaki, Shosuke. « Spin polarization in fractional quantum Hall effect ». Surface Science 532-535 (juin 2003) : 567–75. http://dx.doi.org/10.1016/s0039-6028(03)00091-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Einarsson, T., S. L. Sondhi, S. M. Girvin et D. P. Arovas. « Fractional spin for quantum Hall effect quasiparticles ». Nuclear Physics B 441, no 3 (mai 1995) : 515–29. http://dx.doi.org/10.1016/0550-3213(95)00025-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Mansour, M., et E. H. Zakkari. « FRACTIONAL SPIN THROUGH QUANTUM (SUPER)VIRASORO ALGEBRAS ». Advances in Applied Clifford Algebras 14, no 1 (mars 2004) : 69–80. http://dx.doi.org/10.1007/s00006-004-0007-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Mussard, Bastien, et Julien Toulouse. « Fractional-charge and fractional-spin errors in range-separated density-functional theory ». Molecular Physics 115, no 1-2 (2 août 2016) : 161–73. http://dx.doi.org/10.1080/00268976.2016.1213910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ng, K. K. « Bilayered Spin-S Heisenberg Model in Fractional Dimensions ». International Journal of Modern Physics B 12, no 18 (20 juillet 1998) : 1809–12. http://dx.doi.org/10.1142/s0217979298001034.

Texte intégral
Résumé :
The ground state and the phase transitions of the bilayered spin-S anti-ferromagnetic Heisenberg model were studied by Ng et al.1 by using the Schwinger boson mean field theory. In this paper, an analytic continuation of the self-consistent equations is carried out in order to study the extension of the model to fractional dimensions from 1 to 2. Decreasing the dimensionality from 2 has an effect similar to that of decreasing the spin S. The corresponding phase diagram and phase transition will also be discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Matuszak, Zenon. « Fractional Bloch's Equations Approach to Magnetic Relaxation ». Current Topics in Biophysics 37, no 1 (2 février 2015) : 9–22. http://dx.doi.org/10.2478/ctb-2014-0069.

Texte intégral
Résumé :
It is the goal of this paper to present general strategy for using fractional operators to model the magnetic relaxation in complex environments revealing time and spacial disorder. Such systems have anomalous temporal and spacial response (non-local interactions and long memory) compared to systems without disorder. The systems having no memory can be modeled by linear differential equations with constant coefficients (exponential relaxation); the differential equations governing the systems with memory are known as Fractional Order Differential Equations (FODE). The relaxation of the spin system is best described phenomenologically by so-called Bloch's equations, which detail the rate of change of the magnetization M of the spin system. The Ordinary Order Bloch's Equations (OOBE) are a set of macroscopic differential equations of the first order describing the magnetization behavior under influence of static, varying magnetic fields and relaxation. It is assumed that spins relax along the z axis and in the x-y plane at different rates, designated as R1 and R2 (R1=1/T1,R2=1/T2) respectively, but following first order kinetics. To consider heterogeneity, complex structure, and memory effects in the relaxation process the Ordinary Order Bloch's Equations were generalized to Fractional Order Bloch's Equations (FOBE) through extension of the time derivative to fractional (non-integer) order. To investigate systematically the influence of “fractionality” (power order of derivative) on the dynamics of the spin system a general approach was proposed. The OOBE and FOBE were successively solved using analytical (Laplace transform), semi-analytical (ADM - Adomian Decomposition Method) and numerical methods (Grunwald- Letnikov method for FOBE). Solutions of both OOBE and FOBE systems of equations were obtained for various sets of experimental parameters used in spin !! NMR and EPR spectroscopies. The physical meaning of the fractional relaxation in magnetic resonance is shortly discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Califano, Marco, Tapash Chakraborty et Pekka Pietiläinen. « Spin precession in a fractional quantum Hall state with spin-orbit coupling ». Applied Physics Letters 87, no 11 (12 septembre 2005) : 112508. http://dx.doi.org/10.1063/1.2045546.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mohammed, Wael W., Farah M. Al-Askar, Clemente Cesarano, Thongchai Botmart et M. El-Morshedy. « Wiener Process Effects on the Solutions of the Fractional (2 + 1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation ». Mathematics 10, no 12 (13 juin 2022) : 2043. http://dx.doi.org/10.3390/math10122043.

Texte intégral
Résumé :
The stochastic fractional (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation (SFHFSCE), which is driven in the Stratonovich sense by a multiplicative Wiener process, is considered here. The analytical solutions of the SFHFSCE are attained by utilizing the Jacobi elliptic function method. Various kinds of analytical fractional stochastic solutions, for instance, the elliptic functions, are obtained. Physicists can utilize these solutions to understand a variety of important physical phenomena because magnetic solitons have been categorized as one of the interesting groups of non-linear excitations representing spin dynamics in semi-classical continuum Heisenberg systems. To study the impact of the Wiener process on these solutions, the 3D and 2D surfaces of some achieved exact fractional stochastic solutions are plotted.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhang Ying et Li Zi-Ping. « Fractional spin in non-Abel Chern-Simons theories ». Acta Physica Sinica 54, no 6 (2005) : 2611. http://dx.doi.org/10.7498/aps.54.2611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Peng, Degao, Xiangqian Hu, Deepa Devarajan, Daniel H. Ess, Erin R. Johnson et Weitao Yang. « Variational fractional-spin density-functional theory for diradicals ». Journal of Chemical Physics 137, no 11 (21 septembre 2012) : 114112. http://dx.doi.org/10.1063/1.4749242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Helbig, N., G. Theodorakopoulos et N. N. Lathiotakis. « Fractional spin in reduced density-matrix functional theory ». Journal of Chemical Physics 135, no 5 (7 août 2011) : 054109. http://dx.doi.org/10.1063/1.3615955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Mansour, M., M. Daoud et Y. Hassouni. « K-Fractional spin through Q-deformed (super)-algebras ». Reports on Mathematical Physics 44, no 3 (décembre 1999) : 435–48. http://dx.doi.org/10.1016/s0034-4877(00)87249-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Výborný, Karel, et Daniela Pfannkuche. « Spin structures in inhomogeneous fractional quantum Hall systems ». Physica E : Low-dimensional Systems and Nanostructures 22, no 1-3 (avril 2004) : 142–47. http://dx.doi.org/10.1016/j.physe.2003.11.237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bergholtz, Emil J., Masaaki Nakamura et Juha Suorsa. « Effective spin chains for fractional quantum Hall states ». Physica E : Low-dimensional Systems and Nanostructures 43, no 3 (janvier 2011) : 755–60. http://dx.doi.org/10.1016/j.physe.2010.07.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Nakajima, T., et H. Aoki. « Spin waves in double fractional quantum Hall systems ». Physica B : Condensed Matter 201 (juillet 1994) : 327–30. http://dx.doi.org/10.1016/0921-4526(94)91108-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Niemelä, K., P. Pietiläinen et T. Chakraborty. « Spin transitions in the fractional quantum Hall systems ». Physica B : Condensed Matter 284-288 (juillet 2000) : 1716–17. http://dx.doi.org/10.1016/s0921-4526(99)02999-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Goswami, Gautam, et Pratul Bandyopadhyay. « Fractional statistics, Zp spin system, and XY model ». Journal of Mathematical Physics 33, no 3 (mars 1992) : 1090–96. http://dx.doi.org/10.1063/1.529771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Cortés, J. L., et M. S. Plyushchay. « Linear differential equations for a fractional spin field ». Journal of Mathematical Physics 35, no 11 (novembre 1994) : 6049–57. http://dx.doi.org/10.1063/1.530727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Machida, Tomoki, Susumu Ishizuka et Koji Muraki. « Spin polarization in fractional quantum Hall edge channels ». Physica E : Low-dimensional Systems and Nanostructures 12, no 1-4 (janvier 2002) : 76–79. http://dx.doi.org/10.1016/s1386-9477(01)00246-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lemay, Jean-Michel, Luc Vinet et Alexei Zhedanov. « An analytic spin chain model with fractional revival ». Journal of Physics A : Mathematical and Theoretical 49, no 33 (8 juillet 2016) : 335302. http://dx.doi.org/10.1088/1751-8113/49/33/335302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lee, Taejin, Chekuri N. Rao et K. S. Viswanathan. « Fractional spin in the gauged O(3)σmodel ». Physical Review D 39, no 8 (15 avril 1989) : 2350–54. http://dx.doi.org/10.1103/physrevd.39.2350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Chung, Suk Bum, Daniel F. Agterberg et Eun-A. Kim. « Fractional vortex lattice structures in spin-triplet superconductors ». New Journal of Physics 11, no 8 (13 août 2009) : 085004. http://dx.doi.org/10.1088/1367-2630/11/8/085004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Perdew, John P. « Artificial intelligence “sees” split electrons ». Science 374, no 6573 (10 décembre 2021) : 1322–23. http://dx.doi.org/10.1126/science.abm2445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

FURTADO, J. S. N., et F. A. S. NOBRE. « THE PAULI TERM AS A GENERATOR OF FRACTIONAL SPIN ». Modern Physics Letters A 26, no 19 (21 juin 2011) : 1427–32. http://dx.doi.org/10.1142/s0217732311035912.

Texte intégral
Résumé :
In this work, we show that contrary to what is commonly accepted by the community, the Chern–Simons term is not essential to fractional statistics. A Lagrangian whose dynamics is governed only by the Pauli term coupled to matter fields leads to the fractional spin. Despite its simplicity, development of this Lagrangian gives rise to essentially the same terms that appear in Chern–Simons models, such as those reported by Nobre and Almeida.13,8,9
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie