Littérature scientifique sur le sujet « Fractals »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Fractals ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Fractals"
MITINA, OLGA V., et FREDERICK DAVID ABRAHAM. « THE USE OF FRACTALS FOR THE STUDY OF THE PSYCHOLOGY OF PERCEPTION : PSYCHOPHYSICS AND PERSONALITY FACTORS, A BRIEF REPORT ». International Journal of Modern Physics C 14, no 08 (octobre 2003) : 1047–60. http://dx.doi.org/10.1142/s0129183103005182.
Texte intégralЖихарев, Л., et L. Zhikharev. « Fractals In Three-Dimensional Space. I-Fractals ». Geometry & ; Graphics 5, no 3 (28 septembre 2017) : 51–66. http://dx.doi.org/10.12737/article_59bfa55ec01b38.55497926.
Texte intégralЖихарев et L. Zhikharev. « Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I ». Geometry & ; Graphics 3, no 3 (30 novembre 2015) : 24–37. http://dx.doi.org/10.12737/14417.
Texte intégralHusain, Akhlaq, Manikyala Navaneeth Nanda, Movva Sitaram Chowdary et Mohammad Sajid. « Fractals : An Eclectic Survey, Part II ». Fractal and Fractional 6, no 7 (2 juillet 2022) : 379. http://dx.doi.org/10.3390/fractalfract6070379.
Texte intégralCherny, A. Yu, E. M. Anitas, V. A. Osipov et A. I. Kuklin. « Scattering from surface fractals in terms of composing mass fractals ». Journal of Applied Crystallography 50, no 3 (1 juin 2017) : 919–31. http://dx.doi.org/10.1107/s1600576717005696.
Texte intégralFraboni, Michael, et Trisha Moller. « Fractals in the Classroom ». Mathematics Teacher 102, no 3 (octobre 2008) : 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Texte intégralFraboni, Michael, et Trisha Moller. « Fractals in the Classroom ». Mathematics Teacher 102, no 3 (octobre 2008) : 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Texte intégralJoy, Elizabeth K., et Dr Vikas Garg. « FRACTALS AND THEIR APPLICATIONS : A REVIEW ». Journal of University of Shanghai for Science and Technology 23, no 07 (1 août 2021) : 1509–17. http://dx.doi.org/10.51201/jusst/21/07277.
Texte intégralChen, Yanguang. « Fractal Modeling and Fractal Dimension Description of Urban Morphology ». Entropy 22, no 9 (30 août 2020) : 961. http://dx.doi.org/10.3390/e22090961.
Texte intégralBANAKH, T., et N. NOVOSAD. « MICRO AND MACRO FRACTALS GENERATED BY MULTI-VALUED DYNAMICAL SYSTEMS ». Fractals 22, no 04 (12 novembre 2014) : 1450012. http://dx.doi.org/10.1142/s0218348x14500121.
Texte intégralThèses sur le sujet "Fractals"
Moraes, Leonardo Bastos. « Antenas impressas compactas para sistemas WIMAX ». Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-26122013-161125/.
Texte intégralAchieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
Дядечко, Алла Миколаївна, Алла Николаевна Дядечко, Alla Mykolaivna Diadechko, D. Tokar et V. R. Tarasenko. « Fractals ». Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/13436.
Texte intégralZanotto, Ricardo Anselmo. « Estudo da geometria fractal clássica ». Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/6058.
Texte intégralApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-08-31T19:47:01Z (GMT) No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-31T19:47:01Z (GMT). No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-12-12
Outro
This is a research about a part of the non-Euclidean geometry that has recently been very studied. It was addressed initial themes of the non-Euclidean geometry and it was exposed the studies abut fractals, its history, buildings and main fractals (known as classic fractals). It was also addressed the relation among the school years contents and how to use fractals; as well as some of its applications that have helped a lot of researches to spread and show better results.
Este trabalho é uma pesquisa sobre parte da geometria não euclidiana que há pouco vem sendo muito estudada, os fractais. Abordamos temas iniciais da geometria nãoeuclidiana e no decorrer do trabalho expomos nosso estudo sobre fractais, seu histórico, construções, principais fractais (conhecidos como fractais clássicos). Também abordamos relações entre conteúdos dos anos escolares e como usar fractais nos mesmos; como também algumas de suas aplicações que vem ajudando muitas pesquisas a se difundirem e apresentarem melhores resultados.
LONG, LUN-HAI. « Fractals arithmetiques ». Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13249.
Texte intégralJoanpere, Salvadó Meritxell. « Fractals and Computer Graphics ». Thesis, Linköpings universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68876.
Texte intégralMucheroni, Laís Fernandes [UNESP]. « Dimensão de Hausdorff e algumas aplicações ». Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Texte intégralApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Berbiche, Amine. « Propagation d'ondes acoustiques dans les milieux poreux fractals ». Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Texte intégralThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Prehl, geb Balg Janett. « Diffusion on Fractals ». Master's thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701033.
Texte intégralIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat zu bestimmen. Wir wenden unterschiedliche Feldstärken bei verschiedenen regelmäßigen Sierpinski-Teppichen an und erhalten maximale Driftgeschwindigkeiten für schwache Feldstärken. Über ~t^{2/d_w} bestimmen wir die Random-Walk-Dimension d_w als d_w<2. Dieser Wert für d_w entspricht der Superdiffusion, obwohl der Diffusionsprozess durch Strukturen des Teppichs, wie Sackgassen, behindert wird. Es schient, dass dies das Ergebnis zweier konkurrierender Effekte ist, die durch das Anlegen eines äußeren Feldes entstehen. Einerseits bewegen sich die Teilchen bevorzugt entlang der Feldrichtung. Andererseits gelangen einige Teilchen in Sackgassen. Um die Sackgassen, die in Feldrichtung liegen, zu verlassen, müssen sich die Teilchen entgegen der Feldrichtung bewegen. Somit sind die Teilchen eine gewisse Zeit in der Sackgasse gefangen. Infolge der durch das äußere Feld beschleunigten und der gefangenen Teilchen, verbreitert sich die Wahrscheinlichkeitsverteilung der Teilchen und somit ist d_w<2
Yin, Qinghe. « Fractals and sumsets ». Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phy51.pdf.
Texte intégralBeaver, Philip Frederick. « Fractals and chaos ». Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28232.
Texte intégralLivres sur le sujet "Fractals"
A, Pickover Clifford, dir. Fractal horizons : The future use of fractals. New York : St. Martin's Press, 1996.
Trouver le texte intégralFeder, Jens. Fractals. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6.
Texte intégralDekking, Michel, Jacques Lévy Véhel, Evelyne Lutton et Claude Tricot, dir. Fractals. London : Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0873-3.
Texte intégralO'Connell, Richard. Fractals. Newport : Atlantis Editions, 2002.
Trouver le texte intégralStephen, Pollock, et British Broadcasting Corporation, dir. Fractals. [London] : [British Broadcasting Corporation, 1990.
Trouver le texte intégralFeder, Jens. Fractals. New York : Plenum Press, 1988.
Trouver le texte intégralFeder, Jens. Fractals. New York, NY : Plenum Press, 1988.
Trouver le texte intégralMac Cormac, Earl, et Maxim I. Stamenov, dir. Fractals of Brain, Fractals of Mind. Amsterdam : John Benjamins Publishing Company, 1996. http://dx.doi.org/10.1075/aicr.7.
Texte intégralBarnsley, Michael. Fractals everywhere. 2e éd. Boston : Academic Press, 1993.
Trouver le texte intégralBarnsley, Michael. Fractals everywhere. Mineola, N.Y : Dover Publications, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Fractals"
Hergarten, Stefan. « Fractals and Fractal Distributions ». Dans Self-Organized Criticality in Earth Systems, 1–24. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04390-5_1.
Texte intégralCourtens, Eric, et René Vacher. « Fractons in Real Fractals ». Dans Random Fluctuations and Pattern Growth : Experiments and Models, 20–26. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2653-0_4.
Texte intégralFeder, Jens. « Introduction ». Dans Fractals, 1–5. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_1.
Texte intégralFeder, Jens. « Self-Similarity and Self-Affinity ». Dans Fractals, 184–92. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_10.
Texte intégralFeder, Jens. « Wave-Height Statistics ». Dans Fractals, 193–99. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_11.
Texte intégralFeder, Jens. « The Perimeter-Area Relation ». Dans Fractals, 200–211. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_12.
Texte intégralFeder, Jens. « Fractal Surfaces ». Dans Fractals, 212–28. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_13.
Texte intégralFeder, Jens. « Observations of Fractal Surfaces ». Dans Fractals, 229–43. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_14.
Texte intégralFeder, Jens. « The Fractal Dimension ». Dans Fractals, 6–30. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_2.
Texte intégralFeder, Jens. « The Cluster Fractal Dimension ». Dans Fractals, 31–40. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_3.
Texte intégralActes de conférences sur le sujet "Fractals"
Wang, Yan. « 3D Fractals From Periodic Surfaces ». Dans ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29081.
Texte intégral« BACK MATTER ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_bmatter.
Texte intégralWEST, BRUCE J. « MODELING FRACTAL DYNAMICS ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0002.
Texte intégralMAINZER, KLAUS. « COMPLEXITY IN NATURE AND SOCIETY : Complexity Management in the Age of Globalization ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0010.
Texte intégralPEARSON, MICHAEL. « FRACTALS, COMPLEXITY AND CHAOS IN SUPPLY CHAIN NETWORKS ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0011.
Texte intégralSING, BERND. « ITERATED FUNCTION SYSTEMS IN MIXED EUCLIDEAN AND 𝔭-ADIC SPACES ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0024.
Texte intégralLIEBOVITCH, L. S., V. K. JIRSA et L. A. SHEHADEH. « STRUCTURE OF GENETIC REGULATORY NETWORKS : EVIDENCE FOR SCALE FREE NETWORKS ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0001.
Texte intégralGORENFLO, RUDOLF, et FRANCESCO MAINARDI. « FRACTIONAL RELAXATION OF DISTRIBUTED ORDER ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0003.
Texte intégralALLEGRINI, P., F. BARBI, P. GRIGOLINI et P. PARADISI. « FRACTIONAL TIME : DISHOMOGENOUS POISSON PROCESSES VS. HOMOGENEOUS NON-POISSON PROCESSES ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0004.
Texte intégralPAPASIMAKIS, NIKITAS, et FOTINI PALLIKARI. « MARKOV MEMORY IN MULTIFRACTAL NATURAL PROCESSES ». Dans Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0005.
Texte intégralRapports d'organisations sur le sujet "Fractals"
Haussermann, John W. An Introduction to Fractals and Chaos. Fort Belvoir, VA : Defense Technical Information Center, juin 1989. http://dx.doi.org/10.21236/ada210257.
Texte intégralDriscoll, John. Fractals as Basis for Design and Critique. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.7059.
Texte intégralMoore, Charles. A Quantitative Description of Soil Microstructure Using Fractals. Fort Belvoir, VA : Defense Technical Information Center, juillet 1992. http://dx.doi.org/10.21236/ada337825.
Texte intégralKostoff, Ronald N., Dustin Johnson, J. A. Del Rio, Louis A. Bloomfield, Michael F. Shlesinger et Guido Malpohl. Duplicate Publication and 'Paper Inflation' in the Fractals Literature. Fort Belvoir, VA : Defense Technical Information Center, janvier 2005. http://dx.doi.org/10.21236/ada440622.
Texte intégralOppenheim, Alan V., et Gregory W. Wornell. Signal Analysis, Synthesis and Processing Using Fractals and Wavelets. Fort Belvoir, VA : Defense Technical Information Center, novembre 1995. http://dx.doi.org/10.21236/ada305490.
Texte intégralRao, C. R., et S. R. Kumara. Shape and Image Analysis using Neural Networks Fractals and Wavelets. Fort Belvoir, VA : Defense Technical Information Center, mai 2000. http://dx.doi.org/10.21236/ada392772.
Texte intégralYortsos, Y. C., et J. A. Acuna. Numerical construction and flow simulation in networks of fractures using fractals. Office of Scientific and Technical Information (OSTI), novembre 1991. http://dx.doi.org/10.2172/6283188.
Texte intégralPardo Igúzquiza, Eulogio. Karst y fractales. Ilustre Colegio Oficial de Geólogos, décembre 2022. http://dx.doi.org/10.21028/eog.2022.12.05.
Texte intégralAminzadeh, Fred, Charles Sammis, Mohammad Sahimi et David Okaya. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy. Office of Scientific and Technical Information (OSTI), avril 2015. http://dx.doi.org/10.2172/1185274.
Texte intégralFisher, Yuval, et Albert Lawrence. Fractal Image Encoding. Fort Belvoir, VA : Defense Technical Information Center, mars 1992. http://dx.doi.org/10.21236/ada248003.
Texte intégral