Articles de revues sur le sujet « Fourier Ptychographic Microscopy »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Fourier Ptychographic Microscopy.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Fourier Ptychographic Microscopy ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Jizhou Zhang, Jizhou Zhang, Tingfa Xu Tingfa Xu, Xing Wang Xing Wang, Sining Chen Sining Chen et Guoqiang Ni Guoqiang Ni. « Fast gradational reconstruction for Fourier ptychographic microscopy ». Chinese Optics Letters 15, no 11 (2017) : 111702. http://dx.doi.org/10.3788/col201715.111702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ou, Xiaoze, Jaebum Chung, Roarke Horstmeyer et Changhuei Yang. « Aperture scanning Fourier ptychographic microscopy ». Biomedical Optics Express 7, no 8 (29 juillet 2016) : 3140. http://dx.doi.org/10.1364/boe.7.003140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wang, Lin, Qihao Song, Hongbo Zhang, Caojin Yuan et Ting-Chung Poon. « Optical scanning Fourier ptychographic microscopy ». Applied Optics 60, no 4 (30 novembre 2020) : A243. http://dx.doi.org/10.1364/ao.402644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Loetgering, Lars, Tomas Aidukas, Kevin C. Zhou, Felix Wechsler et Roarke Horstmeyer. « Fourier Ptychography Part II : Phase Retrieval and High-Resolution Image Formation ». Microscopy Today 30, no 5 (septembre 2022) : 36–39. http://dx.doi.org/10.1017/s1551929522001055.

Texte intégral
Résumé :
Abstract:This article is the second within a three-part series on Fourier ptychography, which is a computational microscopy technique for high-resolution, large field-of-view imaging. While the first article laid out the basics of Fourier ptychography, this second part sheds light on its algorithmic ingredients. We present a non-technical discussion of phase retrieval, which allows for the synthesis of high-resolution images from a sequence of low-resolution raw data. Fourier ptychographic phase retrieval can be carried out on standard, widefield microscopy platforms with the simple addition of a low-cost LED array, thus offering a convenient alternative to other phase-sensitive techniques that require more elaborate hardware such as differential interference contrast and digital holography.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Yongbing, Weixin Jiang, Lei Tian, Laura Waller et Qionghai Dai. « Self-learning based Fourier ptychographic microscopy ». Optics Express 23, no 14 (8 juillet 2015) : 18471. http://dx.doi.org/10.1364/oe.23.018471.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Liu, Qiulan, Yue Fang, Renjie Zhou, Peng Xiu, Cuifang Kuang et Xu Liu. « Surface wave illumination Fourier ptychographic microscopy ». Optics Letters 41, no 22 (15 novembre 2016) : 5373. http://dx.doi.org/10.1364/ol.41.005373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhou, You, Jiamin Wu, Zichao Bian, Jinli Suo, Guoan Zheng et Qionghai Dai. « Fourier ptychographic microscopy using wavelength multiplexing ». Journal of Biomedical Optics 22, no 6 (14 juin 2017) : 066006. http://dx.doi.org/10.1117/1.jbo.22.6.066006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Horstmeyer, Roarke, Guoan Zheng, Xiaoze Ou et Changhuei Yang. « Modeling Extensions of Fourier Ptychographic Microscopy ». Microscopy and Microanalysis 20, S3 (août 2014) : 370–71. http://dx.doi.org/10.1017/s1431927614003572.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xiu, Peng, Youhua Chen, Cuifang Kuang, Yue Fang, Yifan Wang, Jiannan Fan, Yingke Xu et Xu Liu. « Structured illumination fluorescence Fourier ptychographic microscopy ». Optics Communications 381 (décembre 2016) : 100–106. http://dx.doi.org/10.1016/j.optcom.2016.06.075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Huang, Kaicheng, Wangwei Hui, Qing Ye, Senlin Jin, Hongyang Zhao, Qiushuai Shi, Jianguo Tian et Wenyuan Zhou. « Compressed-sampling-based Fourier ptychographic microscopy ». Optics Communications 452 (décembre 2019) : 18–24. http://dx.doi.org/10.1016/j.optcom.2019.07.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Pan, An, Chao Zuo, Yuege Xie, Ming Lei et Baoli Yao. « Vignetting effect in Fourier ptychographic microscopy ». Optics and Lasers in Engineering 120 (septembre 2019) : 40–48. http://dx.doi.org/10.1016/j.optlaseng.2019.02.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zhang Jinhua, 张瑾华, 张继洲 Zhang Jizhou, 李佳男 Li Jianan, 李杰 Li Jie, 陈毅文 Chen Yiwen, 汪心 Wang Xin, 王舒珊 Wang Shushan et 许廷发 Xu Tingfa. « 基于叠层衍射成像的傅里叶叠层显微像差校正方法 ». Acta Optica Sinica 41, no 10 (2021) : 1011001. http://dx.doi.org/10.3788/aos202141.1011001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhang, Peiwei, Jufeng Zhao, Binbin Lin, Xiaohui Wu et Guangmang Cui. « Hyperspectral microscopy imaging based on Fourier ptychographic microscopy ». Journal of Optics 24, no 5 (29 mars 2022) : 055301. http://dx.doi.org/10.1088/2040-8986/ac57b3.

Texte intégral
Résumé :
Abstract Hyperspectral resolution, high spatial resolution, and a wide field of view (FOV) are the targets of optical spectral microscopy imaging. However, hyperspectral microscopy imaging technology cannot provide a wide FOV and a high spatial resolution at the same time. Fourier ptychographic microscopy (FPM) is a novel microscopy imaging technique that uses LEDs at varying angles to capture a series of low-spatial-resolution images that are used to recover images that have both high spatial resolution and a wide FOV. Since FPM cannot obtain the spectral resolution of the sample, in this paper, an efficient strategy based on the FPM system is proposed for the reconstruction of hyperspectral images. First, the traditional FPM setup is optimized, with a new experimental setup based on halogen lamp illumination and a narrow band-pass filter to capture a series of low-spatial-resolution images at different wavelengths. Second, a new algorithm, combining hyperspectral resolution imaging using interpolation compensation and a phase retrieval algorithm, is proposed to reconstruct high-spatial-resolution, wide FOV, and hyperspectral resolution images. Finally, we verified the feasibility and effectiveness of our experimental setup and algorithm by both simulation and experiment. The results show that our method can not only reconstruct high-spatial-resolution and wide FOV images, but also has a spectral resolution of 5 nm.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Carlsen, Mads, Trygve M. Ræder, Can Yildirim, Raquel Rodriguez-Lamas, Carsten Detlefs et Hugh Simons. « Fourier ptychographic dark field x-ray microscopy ». Optics Express 30, no 2 (13 janvier 2022) : 2949. http://dx.doi.org/10.1364/oe.447657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sun Jiasong, 孙佳嵩, 张玉珍 Zhang Yuzhen, 陈钱 Chen Qian et 左超 Zuo Chao. « Fourier Ptychographic Microscopy : Theory, Advances, and Applications ». Acta Optica Sinica 36, no 10 (2016) : 1011005. http://dx.doi.org/10.3788/aos201636.1011005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ou, Xiaoze, Roarke Horstmeyer, Changhuei Yang et Guoan Zheng. « Quantitative phase imaging via Fourier ptychographic microscopy ». Optics Letters 38, no 22 (14 novembre 2013) : 4845. http://dx.doi.org/10.1364/ol.38.004845.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Zhang, Yongbing, Weixin Jiang et Qionghai Dai. « Nonlinear optimization approach for Fourier ptychographic microscopy ». Optics Express 23, no 26 (22 décembre 2015) : 33822. http://dx.doi.org/10.1364/oe.23.033822.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhu, Youqiang, Minglu Sun, Xiong Chen, Hao Li, Quanquan Mu, Dayu Li et Li Xuan. « Single full-FOV reconstruction Fourier ptychographic microscopy ». Biomedical Optics Express 11, no 12 (16 novembre 2020) : 7175. http://dx.doi.org/10.1364/boe.409952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Yang Jiaqi, 杨佳琪, 马. 骁. Ma Xiao, 林锦新 Lin Jinxin et 钟金钢 Zhong Jingang. « Intensity Correction Research for Fourier Ptychographic Microscopy ». Laser & ; Optoelectronics Progress 54, no 3 (2017) : 031101. http://dx.doi.org/10.3788/lop54.031101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Pan, An, Yan Zhang, Tianyu Zhao, Zhaojun Wang, Dan Dan, Ming Lei et Baoli Yao. « System calibration method for Fourier ptychographic microscopy ». Journal of Biomedical Optics 22, no 09 (12 septembre 2017) : 1. http://dx.doi.org/10.1117/1.jbo.22.9.096005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Fan, Yao, Jiasong Sun, Qian Chen, Mingqun Wang et Chao Zuo. « Adaptive denoising method for Fourier ptychographic microscopy ». Optics Communications 404 (décembre 2017) : 23–31. http://dx.doi.org/10.1016/j.optcom.2017.05.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zheng, Guoan, Roarke Horstmeyer et Changhuei Yang. « Wide-field, high-resolution Fourier ptychographic microscopy ». Nature Photonics 7, no 9 (28 juillet 2013) : 739–45. http://dx.doi.org/10.1038/nphoton.2013.187.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wang, Xiaoli, Yan Piao, Yuanshang Jin, Jie Li, Zechuan Lin, Jie Cui et Tingfa Xu. « Fourier Ptychographic Reconstruction Method of Self-Training Physical Model ». Applied Sciences 13, no 6 (11 mars 2023) : 3590. http://dx.doi.org/10.3390/app13063590.

Texte intégral
Résumé :
Fourier ptychographic microscopy is a new microscopic computational imaging technology. A series of low-resolution intensity images are collected by a Fourier ptychographic microscopy system, and high-resolution intensity and phase images are reconstructed from the collected low-resolution images by a reconstruction algorithm. It is a kind of microscopy that can achieve both a large field of view and high resolution. Here in this article, a Fourier ptychographic reconstruction method applied to a self-training physical model is proposed. The SwinIR network in the field of super-resolution is introduced into the reconstruction method for the first time. The input of the SwinIR physical model is modified to a two-channel input, and a data set is established to train the network. Finally, the results of high-quality Fourier stack microscopic reconstruction are realized. The SwinIR network is used as the physical model, and the network hyperparameters and processes such as the loss function and optimizer of the custom network are reconstructed. The experimental results show that by using multiple different types of data sets, the two evaluation index values of the proposed method perform best, and the image reconstruction quality is the best after model training. Two different evaluation indexes are used to quantitatively analyze the reconstruction results through numerical results. The reconstruction results of the fine-tuning data set with some real captured images are qualitatively analyzed from the visual effect. The results show that the proposed method is effective, the network model is stable and feasible, the image reconstruction is realized in a short time, and the reconstruction effect is good.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Chen Yican, 陈奕灿, 吴霞 Wu Xia, 罗志 Luo Zhi, 杨恢东 Yang Huidong et 黄波 Huang Bo. « Fourier Ptychographic Microscopy Reconstruction Based on Deep Learning ». Laser & ; Optoelectronics Progress 57, no 22 (2020) : 221106. http://dx.doi.org/10.3788/lop57.221106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zheng, Guoan, Xiaoze Ou, Roarke Horstmeyer, Jaebum Chung et Changhuei Yang. « Fourier Ptychographic Microscopy : A Gigapixel Superscope for Biomedicine ». Optics and Photonics News 25, no 4 (1 avril 2014) : 26. http://dx.doi.org/10.1364/opn.25.4.000026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zhang, Yan, An Pan et Ming Lei. « Data preprocessing methods for robust Fourier ptychographic microscopy ». Optical Engineering 56, no 12 (15 décembre 2017) : 1. http://dx.doi.org/10.1117/1.oe.56.12.123107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lee, Hwihyeong, Byong Hyuk Chon et Hee Kyung Ahn. « Reflective Fourier ptychographic microscopy using a parabolic mirror ». Optics Express 27, no 23 (7 novembre 2019) : 34382. http://dx.doi.org/10.1364/oe.27.034382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ou, Xiaoze, Guoan Zheng et Changhuei Yang. « Embedded pupil function recovery for Fourier ptychographic microscopy ». Optics Express 22, no 5 (24 février 2014) : 4960. http://dx.doi.org/10.1364/oe.22.004960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hou, Lexin, Hexin Wang, Markus Sticker, Lars Stoppe, Junhua Wang et Min Xu. « Adaptive background interference removal for Fourier ptychographic microscopy ». Applied Optics 57, no 7 (26 février 2018) : 1575. http://dx.doi.org/10.1364/ao.57.001575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Horstmeyer, Roarke, et Changhuei Yang. « A phase space model of Fourier ptychographic microscopy ». Optics Express 22, no 1 (2 janvier 2014) : 338. http://dx.doi.org/10.1364/oe.22.000338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Konda, Pavan Chandra, Jonathan M. Taylor et Andrew R. Harvey. « Multi-aperture Fourier ptychographic microscopy, theory and validation ». Optics and Lasers in Engineering 138 (mars 2021) : 106410. http://dx.doi.org/10.1016/j.optlaseng.2020.106410.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lee, Byounghyo, Jong-young Hong, Dongheon Yoo, Jaebum Cho, Youngmo Jeong, Seokil Moon et Byoungho Lee. « Single-shot phase retrieval via Fourier ptychographic microscopy ». Optica 5, no 8 (8 août 2018) : 976. http://dx.doi.org/10.1364/optica.5.000976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zhang, Jizhou, Tingfa Xu, Jingdan Liu, Sining Chen et Xing Wang. « Precise Brightfield Localization Alignment for Fourier Ptychographic Microscopy ». IEEE Photonics Journal 10, no 1 (février 2018) : 1–13. http://dx.doi.org/10.1109/jphot.2017.2780189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ni, Ying-Hui, Si-Yuan Fan, Shu-Yuan Zhang et Ming-Jie Sun. « Hyperuniform illumination subsampling method for Fourier ptychographic microscopy ». Optics and Lasers in Engineering 176 (mai 2024) : 108106. http://dx.doi.org/10.1016/j.optlaseng.2024.108106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Xu, Fannuo, Zipei Wu, Chao Tan, Yizheng Liao, Zhiping Wang, Keru Chen et An Pan. « Fourier Ptychographic Microscopy 10 Years on : A Review ». Cells 13, no 4 (10 février 2024) : 324. http://dx.doi.org/10.3390/cells13040324.

Texte intégral
Résumé :
Fourier ptychographic microscopy (FPM) emerged as a prominent imaging technique in 2013, attracting significant interest due to its remarkable features such as precise phase retrieval, expansive field of view (FOV), and superior resolution. Over the past decade, FPM has become an essential tool in microscopy, with applications in metrology, scientific research, biomedicine, and inspection. This achievement arises from its ability to effectively address the persistent challenge of achieving a trade-off between FOV and resolution in imaging systems. It has a wide range of applications, including label-free imaging, drug screening, and digital pathology. In this comprehensive review, we present a concise overview of the fundamental principles of FPM and compare it with similar imaging techniques. In addition, we present a study on achieving colorization of restored photographs and enhancing the speed of FPM. Subsequently, we showcase several FPM applications utilizing the previously described technologies, with a specific focus on digital pathology, drug screening, and three-dimensional imaging. We thoroughly examine the benefits and challenges associated with integrating deep learning and FPM. To summarize, we express our own viewpoints on the technological progress of FPM and explore prospective avenues for its future developments.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Xiaoli, Yan Piao, Jie Li et Jinyang Yu. « Fourier Ptychographic Microscopy Reconstruction Method Based on Residual Transfer Networks ». Journal of Physics : Conference Series 2400, no 1 (1 décembre 2022) : 012015. http://dx.doi.org/10.1088/1742-6596/2400/1/012015.

Texte intégral
Résumé :
Abstract Fourier ptychographic microscopy reconstruction mostly adopts the traditional alternating iterative phase recovery method and optimization method, which has high computational complexity, high redundancy of image acquisition data, low reconstruction quality and high time consumption. In this paper, the model of residual transfer networks based on Resnet152 is proposed for Fourier ptychographic microscopy reconstruction, the learning process of deep convolution neural network is introduced, and the image reconstruction method based on deep learning realizes the end-to-end reconstruction of low-resolution images to high-resolution images. Through comparative experiments and analysis, the residual network can overcome the gradient explosion, make the feature information more complete and efficient, and the incremental up-sampling reconstruction network has higher image quality, lower computational complexity and shorter running time.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Alotaibi, Maged F. « Reconstruction of Talbot self-image using Fourier ptychographic microscopy ». Alexandria Engineering Journal 61, no 12 (décembre 2022) : 12151–57. http://dx.doi.org/10.1016/j.aej.2022.06.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wang, Aiye, Zhuoqun Zhang, Siqi Wang, An Pan, Caiwen Ma et Baoli Yao. « Fourier Ptychographic Microscopy via Alternating Direction Method of Multipliers ». Cells 11, no 9 (30 avril 2022) : 1512. http://dx.doi.org/10.3390/cells11091512.

Texte intégral
Résumé :
Fourier ptychographic microscopy (FPM) has risen as a promising computational imaging technique that breaks the trade-off between high resolution and large field of view (FOV). Its reconstruction is normally formulated as a blind phase retrieval problem, where both the object and probe have to be recovered from phaseless measured data. However, the stability and reconstruction quality may dramatically deteriorate in the presence of noise interference. Herein, we utilized the concept of alternating direction method of multipliers (ADMM) to solve this problem (termed ADMM-FPM) by breaking it into multiple subproblems, each of which may be easier to deal with. We compared its performance against existing algorithms in both simulated and practical FPM platform. It is found that ADMM-FPM method belongs to a global optimization algorithm with a high degree of parallelism and thus results in a more stable and robust phase recovery under noisy conditions. We anticipate that ADMM will rekindle interest in FPM as more modifications and innovations are implemented in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Tao, Xiao, Jinlei Zhang, Peng Sun, Chang Wang, Chenning Tao, Rengmao Wu et Zhenrong Zheng. « Phase-coded speckle illumination for laser Fourier ptychographic microscopy ». Optics Communications 498 (novembre 2021) : 127199. http://dx.doi.org/10.1016/j.optcom.2021.127199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kuang, Cuifang, Ye Ma, Renjie Zhou, Justin Lee, George Barbastathis, Ramachandra R. Dasari, Zahid Yaqoob et Peter T. C. So. « Digital micromirror device-based laser-illumination Fourier ptychographic microscopy ». Optics Express 23, no 21 (5 octobre 2015) : 26999. http://dx.doi.org/10.1364/oe.23.026999.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ou, Xiaoze, Guoan Zheng et Changhuei Yang. « Embedded pupil function recovery for Fourier ptychographic microscopy : erratum ». Optics Express 23, no 26 (14 décembre 2015) : 33027. http://dx.doi.org/10.1364/oe.23.033027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zheng, Guoan, Roarke Horstmeyer et Changhuei Yang. « Erratum : Corrigendum : Wide-field, high-resolution Fourier ptychographic microscopy ». Nature Photonics 9, no 9 (27 août 2015) : 621. http://dx.doi.org/10.1038/nphoton.2015.148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Sun, Jiasong, Qian Chen, Yuzhen Zhang et Chao Zuo. « Efficient positional misalignment correction method for Fourier ptychographic microscopy ». Biomedical Optics Express 7, no 4 (17 mars 2016) : 1336. http://dx.doi.org/10.1364/boe.7.001336.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Chung, Jaebum, Hangwen Lu, Xiaoze Ou, Haojiang Zhou et Changhuei Yang. « Wide-field Fourier ptychographic microscopy using laser illumination source ». Biomedical Optics Express 7, no 11 (31 octobre 2016) : 4787. http://dx.doi.org/10.1364/boe.7.004787.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhang, Jizhou, Tingfa Xu, Ziyi Shen, Yifan Qiao et Yizhou Zhang. « Fourier ptychographic microscopy reconstruction with multiscale deep residual network ». Optics Express 27, no 6 (11 mars 2019) : 8612. http://dx.doi.org/10.1364/oe.27.008612.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhang, Jizhou, Tingfa Xu, Sining Chen et Xing Wang. « Efficient Colorful Fourier Ptychographic Microscopy Reconstruction With Wavelet Fusion ». IEEE Access 6 (2018) : 31729–39. http://dx.doi.org/10.1109/access.2018.2841854.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wang, Xing, Tingfa Xu, Jizhou Zhang, Sining Chen et Yizhou Zhang. « SO-YOLO Based WBC Detection With Fourier Ptychographic Microscopy ». IEEE Access 6 (2018) : 51566–76. http://dx.doi.org/10.1109/access.2018.2865541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Liu, Qiulan, Cuifang Kuang, Yue Fang, Peng Xiu, Yicheng Li, Ruixin Wen et Xu Liu. « Effect of spatial spectrum overlap on Fourier ptychographic microscopy ». Journal of Innovative Optical Health Sciences 10, no 02 (mars 2017) : 1641004. http://dx.doi.org/10.1142/s1793545816410042.

Texte intégral
Résumé :
Fourier ptychographic microscopy (FPM) is a newly developed imaging technique which stands out by virtue of its high-resolution and wide FOV. It improves a microscope’s imaging performance beyond the diffraction limit of the employed optical components by illuminating the sample with oblique waves of different incident angles, similar to the concept of synthetic aperture. We propose to use an objective lens with high-NA to generate oblique illuminating waves in FPM. We demonstrate utilizing an objective lens with higher NA to illuminate the sample leads to better resolution by simulations, in which a resolution of 0.28[Formula: see text][Formula: see text]m is achieved by using a high-NA illuminating objective lens (NA[Formula: see text][Formula: see text]) and a low-NA collecting objective lens (NA[Formula: see text][Formula: see text]) in coherent imaging ([Formula: see text][Formula: see text]nm). We then deeply study FPM’s exact relevance of convergence speed to spatial spectrum overlap in frequency domain. The simulation results show that an overlap of about 60% is the optimal choice to acquire a high-quality recovery (520*520 pixels) with about 2 min’s computing time. In addition, we testify the robustness of the algorithm of FPM to additive noises and its suitability for phase objects, which further proves FPM’s potential application in biomedical imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
49

ZHENG, Chuan-jian, De-long YANG, Shao-hui ZHANG, Yao HU et Qun HAO. « Pose calibration of light source in Fourier ptychographic microscopy ». Chinese Journal of Liquid Crystals and Displays 38, no 6 (2023) : 712–29. http://dx.doi.org/10.37188/cjlcd.2023-0016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Liu, Qiulan, Youhua Chen, Wenjie Liu, Yubing Han, Ruizhi Cao, Zhimin Zhang, Cuifang Kuang et Xu Liu. « Total internal reflection fluorescence pattern-illuminated Fourier ptychographic microscopy ». Optics and Lasers in Engineering 123 (décembre 2019) : 45–52. http://dx.doi.org/10.1016/j.optlaseng.2019.06.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie