Littérature scientifique sur le sujet « Forward Backward Stochastic Differential Equations (FBSDE) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Forward Backward Stochastic Differential Equations (FBSDE) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Forward Backward Stochastic Differential Equations (FBSDE)"
Zhang, Kevin, Junhao Zhu, Dehan Kong et Zhaolei Zhang. « Modeling single cell trajectory using forward-backward stochastic differential equations ». PLOS Computational Biology 20, no 4 (15 avril 2024) : e1012015. http://dx.doi.org/10.1371/journal.pcbi.1012015.
Texte intégralTakahashi, Akihiko, et Toshihiro Yamada. « An asymptotic expansion of forward-backward SDEs with a perturbed driver ». International Journal of Financial Engineering 02, no 02 (juin 2015) : 1550020. http://dx.doi.org/10.1142/s2424786315500206.
Texte intégralYang, Jie, et Weidong Zhao. « Convergence of Recent Multistep Schemes for a Forward-Backward Stochastic Differential Equation ». East Asian Journal on Applied Mathematics 5, no 4 (novembre 2015) : 387–404. http://dx.doi.org/10.4208/eajam.280515.211015a.
Texte intégralGeiss, Christel, Céline Labart et Antti Luoto. « Mean square rate of convergence for random walk approximation of forward-backward SDEs ». Advances in Applied Probability 52, no 3 (septembre 2020) : 735–71. http://dx.doi.org/10.1017/apr.2020.17.
Texte intégralJi, Shaolin, Chuanfeng Sun et Qingmeng Wei. « The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System ». Mathematical Problems in Engineering 2013 (2013) : 1–14. http://dx.doi.org/10.1155/2013/958920.
Texte intégralSong, Yunquan. « Terminal-Dependent Statistical Inference for the FBSDEs Models ». Mathematical Problems in Engineering 2014 (2014) : 1–11. http://dx.doi.org/10.1155/2014/365240.
Texte intégralDOS REIS, GONÇALO, et RICARDO J. N. DOS REIS. « A NOTE ON COMONOTONICITY AND POSITIVITY OF THE CONTROL COMPONENTS OF DECOUPLED QUADRATIC FBSDE ». Stochastics and Dynamics 13, no 04 (7 octobre 2013) : 1350005. http://dx.doi.org/10.1142/s0219493713500056.
Texte intégralWang, Mingcan, et Xiangjun Wang. « Hybrid Neural Networks for Solving Fully Coupled, High-Dimensional Forward–Backward Stochastic Differential Equations ». Mathematics 12, no 7 (3 avril 2024) : 1081. http://dx.doi.org/10.3390/math12071081.
Texte intégralWu, Zhen. « Fully coupled FBSDE with Brownian motion and Poisson process in stopping time duration ». Journal of the Australian Mathematical Society 74, no 2 (avril 2003) : 249–66. http://dx.doi.org/10.1017/s1446788700003281.
Texte intégralWei, Qingmeng, Jiongmin Yong et Zhiyong Yu. « Linear quadratic stochastic optimal control problems with operator coefficients : open-loop solutions ». ESAIM : Control, Optimisation and Calculus of Variations 25 (2019) : 17. http://dx.doi.org/10.1051/cocv/2018013.
Texte intégralThèses sur le sujet "Forward Backward Stochastic Differential Equations (FBSDE)"
Fromm, Alexander. « Theory and applications of decoupling fields for forward-backward stochastic differential equations ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2015. http://dx.doi.org/10.18452/17115.
Texte intégralThis thesis deals with the theory of so called forward-backward stochastic differential equations (FBSDE) which can be seen as a stochastic formulation and in some sense generalization of parabolic quasi-linear partial differential equations. The thesis consist of two parts: In the first we develop the theory of so called decoupling fields for general multidimensional fully coupled FBSDE in a Brownian setting. The theory consists of uniqueness and existence results for decoupling fields on the so called the maximal interval. It also provides tools to investigate well-posedness and regularity for particular problems. In total the theory is developed for three different classes of FBSDE: In the first Lipschitz continuity of the parameter functions is required, which at the same time are allowed to be random. The other two classes we investigate are based on the theory developed for the first one. In both of them all parameter functions have to be deterministic. However, two different types of local Lipschitz continuity replace the more restrictive Lipschitz continuity of the first class. In the second part we apply these techniques to three different problems: In the first application we demonstrate how well-posedness of FBSDE in the so called non-degenerate case can be investigated. As a second application we demonstrate the solvability of a system, which provides a solution to the so called Skorokhod embedding problem (SEP) via FBSDE. The solution to the SEP is provided for the case of general non-linear drift. The third application provides solutions to a complex FBSDE from which optimal trading strategies for a problem of utility maximization in incomplete markets are constructed. The FBSDE is solved in a relatively general setting, i.e. for a relatively general class of utility functions on the real line.
Wang, Xince. « Quasilinear PDEs and forward-backward stochastic differential equations ». Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17383.
Texte intégralNie, Tianyang. « Stochastic differential equations with constraints on the state : backward stochastic differential equations, variational inequalities and fractional viability ». Thesis, Brest, 2012. http://www.theses.fr/2012BRES0047.
Texte intégralThis PhD thesis is composed of three main topics: The first one studies the existence and the uniqueness for fully coupled forward-backward stochastic differential equations (SDEs) with subdifferential operators in both the forward and the backward equations, and it discusses also a new type of associated parabolic partial variational inequalities with two subdifferential operators, one acting over the state domain and the other over the co-domain. The second topic concerns the investigation of backward SDEs without as well as with subdifferential operator, both driven by a fractional Brownian motion with Hurst parameter H> 1/2. It extends in a rigorous manner the results of Hu and Peng (SICON, 2009) to backward stochastic variational inequalities. Finally, the third topic focuses on a deterministic characterisation of the viability for SDEs driven by a fractional Brownian motion. The three research topics mentioned above have in common to study SDEs with state constraints. The discussion of each of the three topics is based on a publication and on submitted manuscripts, respectively
Manai, Arij. « Some contributions to backward stochastic differential equations and applications ». Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1022.
Texte intégralThis thesis is dedicated to the study of backward stochastic differential equations (BSDEs) and their applications. In chapter 1, we study the problem of maximizing the utility from terminal wealth where the stock price may jump and there are investment constraints on the agent 's strategies. We focus on the BSDE whose solution represents the maximal utility, which allows transferring results on quadratic BSDEs, in particular the stability results, to the problem of utility maximisation. In chapter 2, we consider the problem of pricing American options from theoretical and numerical sides based upon an alternative representation of the value of the option in the form of a viscosity solution of a parabolic equation with a nonlinear reaction term. We extend the viscosity solution characterization proved in [Benth, Karlsen and Reikvam 2003] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting. We address two new numerical schemes inspired by the branching processes. Our numerical experiments show that approximating the discontinuous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results. In chapter 3, we prove existence and uniqueness results for a general class of coupled mean-field forward-backward SDEs with jumps under weak monotonicity conditions and without the non-degeneracy assumption on the forward equation and we give an application in the field of storage in smart grids in the case where the production of electricity is unpredictable
Salhi, Rym. « Contributions to quadratic backward stochastic differential equations with jumps and applications ». Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.
Texte intégralThis thesis focuses on backward stochastic differential equation with jumps and their applications. In the first chapter, we study a backward stochastic differential equation (BSDE for short) driven jointly by a Brownian motion and an integer valued random measure that may have infinite activity with compensator being possibly time inhomogeneous. In particular, we are concerned with the case where the driver has quadratic growth and unbounded terminal condition. The existence and uniqueness of the solution are proven by combining a monotone approximation technics and a forward approach. Chapter 2 is devoted to the well-posedness of generalized doubly reflected BSDEs (GDRBSDE for short) with jumps under weaker assumptions on the data. In particular, we study the existence of a solution for a one-dimensional GDRBSDE with jumps when the terminal condition is only measurable with respect to the related filtration and when the coefficient has general stochastic quadratic growth. We also show, in a suitable framework, the connection between our class of backward stochastic differential equations and risk sensitive zero-sum game. In chapter 3, we investigate a general class of fully coupled mean field forward-backward under weak monotonicity conditions without assuming any non-degeneracy assumption on the forward equation. We derive existence and uniqueness results under two different sets of conditions based on proximation schema weither on the forward or the backward equation. Later, we give an application for storage in smart grids
Fromm, Alexander [Verfasser], Peter [Akademischer Betreuer] Imkeller, Stefan [Akademischer Betreuer] Ankirchner et Anthony [Akademischer Betreuer] Réveillac. « Theory and applications of decoupling fields for forward-backward stochastic differential equations / Alexander Fromm. Gutachter : Peter Imkeller ; Stefan Ankirchner ; Anthony Réveillac ». Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2015. http://d-nb.info/1065723083/34.
Texte intégralOuknine, Anas. « Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Texte intégralThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Mtiraoui, Ahmed. « I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées ». Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0010/document.
Texte intégralIn this Phd thesis, we considers two parts. The first one establish the existence and the uniquness of the solutions of multidimensional backward doubly stochastic differential equations (BDSDEs in short) and the stochastic partial differential equations (SPDEs in short) in the superlinear growth generators. In the second part, we study the stochastic controls problems driven by a coupled Forward-Backward stochastic differentialequations (FBSDEs in short).• BDSDEs and SPDEs with a superlinear growth generators :We deal with multidimensional BDSDE with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator then we show that they ensure the existence and uniqueness as well as the stability of solutions. Our work go beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one dimensional too. As application, we establish the existence and uniqueness of probabilistic solutions tosome semilinear SPDEs with superlinear growth generator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.• Controlled coupled FBSDEs :We establish the existence of an optimal control for a system driven by a coupled FBDSE. The cost functional is defined as the initial value of the backward component of the solution. We construct a sequence of approximating controlled systems, for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we get the existence of a feedback optimal control. The convexity condition is used to ensure that the optimal control is strict. In this part, we study two cases of diffusions : degenerate and non-degenerate
Wu, Yue. « Pathwise anticipating random periodic solutions of SDEs and SPDEs with linear multiplicative noise ». Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15991.
Texte intégralZhang, Liangliang. « Essays on numerical solutions to forward-backward stochastic differential equations and their applications in finance ». Thesis, 2017. https://hdl.handle.net/2144/26430.
Texte intégralLivres sur le sujet "Forward Backward Stochastic Differential Equations (FBSDE)"
Ma, Jin, et Jiongmin Yong. Forward-Backward Stochastic Differential Equations and their Applications. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48831-6.
Texte intégralMa, Jin. Forward-backward stochastic differential equations and their applications. Berlin : Springer, 1999.
Trouver le texte intégralForward-Backward Stochastic Differential Equations and Their Applications. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0092524.
Texte intégralYong, Jiongmin, et Jin Ma. Forward-Backward Stochastic Differential Equations and Their Applications. Springer London, Limited, 2007.
Trouver le texte intégralChassagneux, Jean-François, Hinesh Chotai et Mirabelle Muûls. A Forward-Backward SDEs Approach to Pricing in Carbon Markets. Springer, 2017.
Trouver le texte intégralMa, Jin, et Jiongmin Yong. Forward-Backward Stochastic Differential Equations and their Applications (Lecture Notes in Mathematics). Springer, 2007.
Trouver le texte intégralChapitres de livres sur le sujet "Forward Backward Stochastic Differential Equations (FBSDE)"
Zhang, Jianfeng. « Forward-Backward SDEs ». Dans Backward Stochastic Differential Equations, 177–201. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7256-2_8.
Texte intégralDelong, Łukasz. « Forward-Backward Stochastic Differential Equations ». Dans EAA Series, 79–99. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5331-3_4.
Texte intégralChassagneux, Jean-François, Hinesh Chotai et Mirabelle Muûls. « Introduction to Forward-Backward Stochastic Differential Equations ». Dans A Forward-Backward SDEs Approach to Pricing in Carbon Markets, 11–42. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63115-8_2.
Texte intégralMa, Jin, et Tim Zajic. « Rough Asymptotics of Forward-Backward Stochastic Differential Equations ». Dans Control of Distributed Parameter and Stochastic Systems, 239–46. Boston, MA : Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35359-3_29.
Texte intégralKebiri, Omar, Lara Neureither et Carsten Hartmann. « Adaptive Importance Sampling with Forward-Backward Stochastic Differential Equations ». Dans Stochastic Dynamics Out of Equilibrium, 265–81. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15096-9_7.
Texte intégralKohlmann, Michael. « Reflected Forward Backward Stochastic Differential Equations and Contingent Claims ». Dans Control of Distributed Parameter and Stochastic Systems, 223–30. Boston, MA : Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35359-3_27.
Texte intégralKim, Jin Won, et Sebastian Reich. « On Forward–Backward SDE Approaches to Conditional Estimation ». Dans Mathematics of Planet Earth, 115–36. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70660-8_6.
Texte intégralJiménez-Pastor, A., K. G. Larsen, M. Tribastone et M. Tschaikowski. « Forward and Backward Constrained Bisimulations for Quantum Circuits ». Dans Tools and Algorithms for the Construction and Analysis of Systems, 343–62. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57249-4_17.
Texte intégral« FBSDEs with Reflections ». Dans Forward-Backward Stochastic Differential Equations and their Applications, 169–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48831-6_7.
Texte intégral« Applications of FBSDEs ». Dans Forward-Backward Stochastic Differential Equations and their Applications, 193–234. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48831-6_8.
Texte intégralActes de conférences sur le sujet "Forward Backward Stochastic Differential Equations (FBSDE)"
Exarchos, Ioannis, et Evangelos A. Theodorou. « Learning optimal control via forward and backward stochastic differential equations ». Dans 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7525237.
Texte intégralExarchos, Ioannis, Evangelos A. Theodorou et Panagiotis Tsiotras. « Game-theoretic and risk-sensitive stochastic optimal control via forward and backward stochastic differential equations ». Dans 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799215.
Texte intégralShanshan, Zuo, et Min Hui. « Optimal control problems of mean-field forward-backward stochastic differential equations with partial information ». Dans 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561841.
Texte intégralAshok Naarayan, Aadhithya, et Panos Parpas. « Stable Multilevel Deep Neural Networks for Option Pricing and xVAs Using Forward-Backward Stochastic Differential Equations ». Dans ICAIF '24 : 5th ACM International Conference on AI in Finance, 336–43. New York, NY, USA : ACM, 2024. http://dx.doi.org/10.1145/3677052.3698598.
Texte intégralHawkins, Kelsey P., Ali Pakniyat et Panagiotis Tsiotras. « On the Time Discretization of the Feynman-Kac Forward-Backward Stochastic Differential Equations for Value Function Approximation ». Dans 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683583.
Texte intégral