Articles de revues sur le sujet « Fluid-structure interaction »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Fluid-structure interaction.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Fluid-structure interaction ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Xing, Jing Tang. « Fluid-Structure Interaction ». Strain 39, no 4 (novembre 2003) : 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bazilevs, Yuri, Kenji Takizawa et Tayfun E. Tezduyar. « Fluid–structure interaction ». Computational Mechanics 55, no 6 (10 mai 2015) : 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati et Sang-Eul Han. « The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method ». Journal of Clean Energy Technologies 3, no 4 (2015) : 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ortiz, Jose L., et Alan A. Barhorst. « Modeling Fluid-Structure Interaction ». Journal of Guidance, Control, and Dynamics 20, no 6 (novembre 1997) : 1221–28. http://dx.doi.org/10.2514/2.4180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ko, Sung H. « Structure–fluid interaction problems ». Journal of the Acoustical Society of America 88, no 1 (juillet 1990) : 367. http://dx.doi.org/10.1121/1.399912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Semenov, Yuriy A. « Fluid/Structure Interactions ». Journal of Marine Science and Engineering 10, no 2 (26 janvier 2022) : 159. http://dx.doi.org/10.3390/jmse10020159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Takizawa, Kenji, Yuri Bazilevs et Tayfun E. Tezduyar. « Computational fluid mechanics and fluid–structure interaction ». Computational Mechanics 50, no 6 (18 septembre 2012) : 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bazilevs, Yuri, Kenji Takizawa et Tayfun E. Tezduyar. « Biomedical fluid mechanics and fluid–structure interaction ». Computational Mechanics 54, no 4 (15 juillet 2014) : 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Souli, M., K. Mahmadi et N. Aquelet. « ALE and Fluid Structure Interaction ». Materials Science Forum 465-466 (septembre 2004) : 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chung, H., et M. D. Bernstein. « Topics in Fluid Structure Interaction ». Journal of Pressure Vessel Technology 107, no 1 (1 février 1985) : 99. http://dx.doi.org/10.1115/1.3264418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

van Rij, J., T. Harman et T. Ameel. « Slip flow fluid-structure-interaction ». International Journal of Thermal Sciences 58 (août 2012) : 9–19. http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Izadpanah, Kamran, Robert L. Harder, Raj Kansakar et Mike Reymond. « Coupled fluid-structure interaction analysis ». Finite Elements in Analysis and Design 7, no 4 (février 1991) : 331–42. http://dx.doi.org/10.1016/0168-874x(91)90049-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hsiao, George C., Francisco-Javier Sayas et Richard J. Weinacht. « Time-dependent fluid-structure interaction ». Mathematical Methods in the Applied Sciences 40, no 2 (19 mars 2015) : 486–500. http://dx.doi.org/10.1002/mma.3427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Tijsseling, A. S., et C. S. W. Lavooij. « Waterhammer with fluid-structure interaction ». Applied Scientific Research 47, no 3 (juillet 1990) : 273–85. http://dx.doi.org/10.1007/bf00418055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Jensen, J. S. « FLUID TRANSPORT DUE TO NONLINEAR FLUID–STRUCTURE INTERACTION ». Journal of Fluids and Structures 11, no 3 (avril 1997) : 327–44. http://dx.doi.org/10.1006/jfls.1996.0080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bathe, Klaus-Ju¨rgen. « Fluid-structure Interactions ». Mechanical Engineering 120, no 04 (1 avril 1998) : 66–68. http://dx.doi.org/10.1115/1.1998-apr-4.

Texte intégral
Résumé :
This article reviews finite element methods that are widely used in the analysis of solids and structures, and they provide great benefits in product design. In fact, with today’s highly competitive design and manufacturing markets, it is nearly impossible to ignore the advances that have been made in the computer analysis of structures without losing an edge in innovation and productivity. Various commercial finite-element programs are widely used and have proven to be indispensable in designing safer, more economical products. Applications of acoustic-fluid/structure interactions are found whenever the fluid can be modeled to be inviscid and to undergo only relatively small particle motions. The interplay between finite-element modeling and analysis with the recognition and understanding of new physical phenomena will advance the understanding of physical processes. This will lead to increasingly better simulations. Based on current technology and realistic expectations of further hardware and software developments, a tremendous future for fluid–structure interaction applications lies ahead.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Rafatpanah, Ramin M., et Jianfeng Yang. « ICONE23-1732 SIMULATING FLUID-STRUCTURE INTERACTION UTILIZING THREE-DIMENSIONAL ACOUSTIC FLUID ELEMENTS FOR REACTOR EQUIPMENT SYSTEM MODEL ». Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015) : _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_362.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Toma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky et Wenbin Mao. « Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics ». Biology 10, no 3 (2 mars 2021) : 185. http://dx.doi.org/10.3390/biology10030185.

Texte intégral
Résumé :
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid–structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid–structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid–structure interactions in complex biological systems.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lefrançois, Emmanuel. « Fluid-structure interaction in rocket engines ». European Journal of Computational Mechanics 19, no 5-7 (janvier 2010) : 637–52. http://dx.doi.org/10.3166/ejcm.19.637-652.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chen, Wenli, Zifeng Yang, Gang Hu, Haiquan Jing et Junlei Wang. « New Advances in Fluid–Structure Interaction ». Applied Sciences 12, no 11 (26 mai 2022) : 5366. http://dx.doi.org/10.3390/app12115366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Meywerk, M., F. Decker et J. Cordes. « Fluid-structure interaction in crash simulation ». Proceedings of the Institution of Mechanical Engineers, Part D : Journal of Automobile Engineering 214, no 7 (juillet 2000) : 669–73. http://dx.doi.org/10.1243/0954407001527547.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lohner, R., J. Cebral, Chi Yang, J. D. Baum, E. Mestreau, C. Charman et D. Pelessone. « Large-scale fluid-structure interaction simulations ». Computing in Science & ; Engineering 6, no 3 (mai 2004) : 27–37. http://dx.doi.org/10.1109/mcise.2004.1289306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Oden, J. T., L. Demkowicz et J. Bennighof. « Fluid-Structure Interaction in Underwater Acoustics ». Applied Mechanics Reviews 43, no 5S (1 mai 1990) : S374—S380. http://dx.doi.org/10.1115/1.3120843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Benaroya, Haym, et Rene D. Gabbai. « Modelling vortex-induced fluid–structure interaction ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 366, no 1868 (5 novembre 2007) : 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.

Texte intégral
Résumé :
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid–structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid–structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion. Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid–structure interaction models entails formulating generalized equations of motion, as a superset of the flow-oscillator models; and developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier–Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Souli, Mhamed, et Nicolas Aquelet. « Fluid Structure Interaction for Hydraulic Problems ». La Houille Blanche, no 6 (décembre 2011) : 5–10. http://dx.doi.org/10.1051/lhb/2011054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Benyahia, Nabil, et Ferhat Souidi. « Fluid-structure interaction in pipe flow ». Progress in Computational Fluid Dynamics, An International Journal 7, no 6 (2007) : 354. http://dx.doi.org/10.1504/pcfd.2007.014685.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chakraborty, Debadi, J. Ravi Prakash, James Friend et Leslie Yeo. « Fluid-structure interaction in deformable microchannels ». Physics of Fluids 24, no 10 (octobre 2012) : 102002. http://dx.doi.org/10.1063/1.4759493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

TAKIZAWA, KENJI, et TAYFUN E. TEZDUYAR. « SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS ». Mathematical Models and Methods in Applied Sciences 22, supp02 (25 juillet 2012) : 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Texte intégral
Résumé :
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gorla, Rama Subba Reddy, Shantaram S. Pai et Jeffrey J. Rusick. « Probabilistic study of fluid structure interaction ». International Journal of Engineering Science 41, no 3-5 (mars 2003) : 271–82. http://dx.doi.org/10.1016/s0020-7225(02)00205-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Haase, Werner. « Unsteady aerodynamics including fluid/structure interaction ». Air & ; Space Europe 3, no 3-4 (mai 2001) : 83–86. http://dx.doi.org/10.1016/s1290-0958(01)90063-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Casoni, Eva, Guillaume Houzeaux et Mariano Vázquez. « Parallel Aspects of Fluid-structure Interaction ». Procedia Engineering 61 (2013) : 117–21. http://dx.doi.org/10.1016/j.proeng.2013.07.103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Degroote, Joris. « Partitioned Simulation of Fluid-Structure Interaction ». Archives of Computational Methods in Engineering 20, no 3 (14 juillet 2013) : 185–238. http://dx.doi.org/10.1007/s11831-013-9085-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Griffith, Boyce E., et Neelesh A. Patankar. « Immersed Methods for Fluid–Structure Interaction ». Annual Review of Fluid Mechanics 52, no 1 (5 janvier 2020) : 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.

Texte intégral
Résumé :
Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid–structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid–structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kamakoti, Ramji, et Wei Shyy. « Fluid–structure interaction for aeroelastic applications ». Progress in Aerospace Sciences 40, no 8 (novembre 2004) : 535–58. http://dx.doi.org/10.1016/j.paerosci.2005.01.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Han, Luhui, et Xiangyu Hu. « SPH modeling of fluid-structure interaction ». Journal of Hydrodynamics 30, no 1 (février 2018) : 62–69. http://dx.doi.org/10.1007/s42241-018-0006-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Dumitrache, C. L., et D. Deleanu. « Sloshing effect, Fluid Structure Interaction analysis ». IOP Conference Series : Materials Science and Engineering 916 (11 septembre 2020) : 012030. http://dx.doi.org/10.1088/1757-899x/916/1/012030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Samuelides, E., et P. A. Frieze. « Fluid-structure interaction in ship collisions ». Marine Structures 2, no 1 (janvier 1989) : 65–88. http://dx.doi.org/10.1016/0951-8339(89)90024-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Jung, Sunghwan, et Ramiro Godoy-Diana. « Special issue : bioinspired fluid-structure interaction ». Bioinspiration & ; Biomimetics 18, no 3 (3 avril 2023) : 030401. http://dx.doi.org/10.1088/1748-3190/acc778.

Texte intégral
Résumé :
Abstract Fluid-structure interaction (FSI) studies the interaction between fluid and solid objects. It helps understand how fluid motion affects solid objects and vice versa. FSI research is important in engineering applications such as aerodynamics, hydrodynamics, and structural analysis. It has been used to design efficient systems such as ships, aircraft, and buildings. FSI in biological systems has gained interest in recent years for understanding how organisms interact with their fluidic environment. Our special issue features papers on various biological and bio-inspired FSI problems. Papers in this special issue cover topics ranging from flow physics to optimization and diagonistics. These papers offer new insights into natural systems and inspire the development of new technologies based on natural principles.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Hou, Gene, Jin Wang et Anita Layton. « Numerical Methods for Fluid-Structure Interaction — A Review ». Communications in Computational Physics 12, no 2 (août 2012) : 337–77. http://dx.doi.org/10.4208/cicp.291210.290411s.

Texte intégral
Résumé :
AbstractThe interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Nho, In-Sik, et Sang-Mook Shin. « Fluid-Structure Interaction Analysis for Structure in Viscous Flow ». Journal of the Society of Naval Architects of Korea 45, no 2 (20 avril 2008) : 168–74. http://dx.doi.org/10.3744/snak.2008.45.2.168.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Liu, Tiegang, A. W. Chowdhury et Boo Cheong Khoo. « The Modified Ghost Fluid Method Applied to Fluid-Elastic Structure Interaction ». Advances in Applied Mathematics and Mechanics 3, no 5 (octobre 2011) : 611–32. http://dx.doi.org/10.4208/aamm.10-m1054.

Texte intégral
Résumé :
AbstractIn this work, the modified ghost fluid method is developed to deal with 2D compressible fluid interacting with elastic solid in an Euler-Lagrange coupled system. In applying the modified Ghost Fluid Method to treat the fluid-elastic solid coupling, the Navier equations for elastic solid are cast into a system similar to the Euler equations but in Lagrangian coordinates. Furthermore, to take into account the influence of material deformation and nonlinear wave interaction at the interface, an Euler-Lagrange Riemann problem is constructed and solved approximately along the normal direction of the interface to predict the interfacial status and then define the ghost fluid and ghost solid states. Numerical tests are presented to verify the resultant method.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Huerta, A., et W. K. Liu. « Viscous Flow Structure Interaction ». Journal of Pressure Vessel Technology 110, no 1 (1 février 1988) : 15–21. http://dx.doi.org/10.1115/1.3265561.

Texte intégral
Résumé :
Considerable research activities in vibration and seismic analysis for various fluid-structure systems have been carried out in the past two decades. Most of the approaches are formulated within the framework of finite elements, and the majority of work deals with inviscid fluids. However, there has been little work done in the area of fluid-structure interaction problems accounting for flow separation and nonlinear phenomenon of steady streaming. In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method is extended to address the flow separation and nonlinear phenomenon of steady streaming for arbitrarily shaped bodies undergoing large periodic motion in a viscous fluid. The results are designed to evaluate the fluid force acting on the body; thus, the coupled rigid body-viscous flow problem can be simplified to a standard structural problem using the concept of added mass and added damping. Formulas for these two constants are given for the particular case of a cylinder immersed in an infinite viscous fluid. The finite element modeling is based on a pressure-velocity mixed formulation and a streamline upwind Petrov/Galerkin technique. All computations are performed using a personal computer.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wang, Xiaolin, Ken Kamrin et Chris H. Rycroft. « An incompressible Eulerian method for fluid–structure interaction with mixed soft and rigid solids ». Physics of Fluids 34, no 3 (mars 2022) : 033604. http://dx.doi.org/10.1063/5.0082233.

Texte intégral
Résumé :
We present a general simulation approach for incompressible fluid–structure interactions in a fully Eulerian framework using the reference map technique. The approach is suitable for modeling one or more rigid or finitely deformable objects or soft objects with rigid components interacting with the fluid and with each other. It is also extended to control the kinematics of structures in fluids. The model is based on our previous Eulerian fluid–soft solver [Rycroft et al., “Reference map technique for incompressible fluid–structure interaction,” J. Fluid Mech. 898, A9 (2020)] and generalized to rigid structures by constraining the deformation-rate tensor in a projection framework. Several numerical examples are presented to illustrate the capability of the method.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Tchieu, A. A., D. Crowdy et A. Leonard. « Fluid-structure interaction of two bodies in an inviscid fluid ». Physics of Fluids 22, no 10 (octobre 2010) : 107101. http://dx.doi.org/10.1063/1.3485063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Hamdan, F. H. « Near-field fluid–structure interaction using Lagrangian fluid finite elements ». Computers & ; Structures 71, no 2 (avril 1999) : 123–41. http://dx.doi.org/10.1016/s0045-7949(98)00298-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yang, Liang. « One-fluid formulation for fluid–structure interaction with free surface ». Computer Methods in Applied Mechanics and Engineering 332 (avril 2018) : 102–35. http://dx.doi.org/10.1016/j.cma.2017.12.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bazilevs, Yuri, Kenji Takizawa et Tayfun E. Tezduyar. « Special issue on computational fluid mechanics and fluid–structure interaction ». Computational Mechanics 48, no 3 (8 juillet 2011) : 245. http://dx.doi.org/10.1007/s00466-011-0621-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Leary, P. C. « Relating microscale rock-fluid interaction to macroscale fluid flow structure ». Geological Society, London, Special Publications 147, no 1 (1998) : 243–60. http://dx.doi.org/10.1144/gsl.sp.1998.147.01.16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Sheldon Wang, X., Ye Yang et TaoWu. « Model Studies of Fluid-Structure Interaction Problems ». Computer Modeling in Engineering & ; Sciences 119, no 1 (2019) : 5–34. http://dx.doi.org/10.32604/cmes.2019.04204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Li, Zhilin, X. Sheldon Wang et Lucy T. Zhang. « Preface : Simulation of Fluid-Structure Interaction Problems ». Computer Modeling in Engineering & ; Sciences 119, no 1 (2019) : 1–3. http://dx.doi.org/10.32604/cmes.2019.06635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie