Littérature scientifique sur le sujet « Fluid-structure interaction »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Fluid-structure interaction ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Fluid-structure interaction"

1

Xing, Jing Tang. « Fluid-Structure Interaction ». Strain 39, no 4 (novembre 2003) : 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bazilevs, Yuri, Kenji Takizawa et Tayfun E. Tezduyar. « Fluid–structure interaction ». Computational Mechanics 55, no 6 (10 mai 2015) : 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati et Sang-Eul Han. « The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method ». Journal of Clean Energy Technologies 3, no 4 (2015) : 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ortiz, Jose L., et Alan A. Barhorst. « Modeling Fluid-Structure Interaction ». Journal of Guidance, Control, and Dynamics 20, no 6 (novembre 1997) : 1221–28. http://dx.doi.org/10.2514/2.4180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ko, Sung H. « Structure–fluid interaction problems ». Journal of the Acoustical Society of America 88, no 1 (juillet 1990) : 367. http://dx.doi.org/10.1121/1.399912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Semenov, Yuriy A. « Fluid/Structure Interactions ». Journal of Marine Science and Engineering 10, no 2 (26 janvier 2022) : 159. http://dx.doi.org/10.3390/jmse10020159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Takizawa, Kenji, Yuri Bazilevs et Tayfun E. Tezduyar. « Computational fluid mechanics and fluid–structure interaction ». Computational Mechanics 50, no 6 (18 septembre 2012) : 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bazilevs, Yuri, Kenji Takizawa et Tayfun E. Tezduyar. « Biomedical fluid mechanics and fluid–structure interaction ». Computational Mechanics 54, no 4 (15 juillet 2014) : 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Souli, M., K. Mahmadi et N. Aquelet. « ALE and Fluid Structure Interaction ». Materials Science Forum 465-466 (septembre 2004) : 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chung, H., et M. D. Bernstein. « Topics in Fluid Structure Interaction ». Journal of Pressure Vessel Technology 107, no 1 (1 février 1985) : 99. http://dx.doi.org/10.1115/1.3264418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Fluid-structure interaction"

1

Mawson, Mark. « Interactive fluid-structure interaction with many-core accelerators ». Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/interactive-fluidstructure-interaction-with-manycore-accelerators(a4fc2068-bac7-4511-960d-41d2560a0ea1).html.

Texte intégral
Résumé :
The use of accelerator technology, particularly Graphics Processing Units (GPUs), for scientific computing has increased greatly over the last decade. While this technology allows larger and more complicated problems to be solved faster than before it also presents another opportunity: the real-time and interactive solution of problems. This work aims to investigate the progress that GPU technology has made towards allowing fluid-structure interaction (FSI) problems to be solved in real-time, and to facilitate user interaction with such a solver. A mesoscopic scale fluid flow solver is implemented on third generation nVidia ‘Kepler’ GPUs in two and three dimensions, and its performance studied and compared with existing literature. Following careful optimisation the solvers are found to be at least as efficient as existing work, reaching peak efficiencies of 93% compared with theoretical values. These solvers are then coupled with a novel immersed boundary method, allowing boundaries defined at arbitrary coordinates to interact with the structured fluid domain through a set of singular forces. The limiting factor of the performance of this method is found to be the integration of forces and velocities over the fluid and boundaries; the arbitrary location of boundary markers makes the memory accesses during these integrations largely random, leading to poor utilisation of the available memory bandwidth. In sample cases, the efficiency of the method is found to be as low as 2.7%, although in most scenarios this inefficiency is masked by the fact that the time taken to evolve the fluid flow dominates the overall execution time of the solver. Finally, techniques to visualise the fluid flow in-situ are implemented, and used to allow user interaction with the solvers. Initially this is achieved via keyboard and mouse to control the fluid properties and create boundaries within the fluid, and later by using an image based depth sensor to import real world geometry into the fluid. The work concludes that, for 2D problems, real-time interactive FSI solvers can be implemented on a single laptop-based GPU. In 3D the memory (both size and bandwidth) of the GPU limits the solver to relatively simple cases. Recommendations for future work to allow larger and more complicated test cases to be solved in real-time are then made to complete the work.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Altstadt, Eberhard, Helmar Carl et Rainer Weiß. « Fluid-Structure Interaction Investigations for Pipelines ». Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28993.

Texte intégral
Résumé :
The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Plessas, Spyridon D. « Fluid-structure interaction in composite structures ». Thesis, Monterey, California : Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.

Texte intégral
Résumé :
Approved for public release; distribution is unlimited.
In this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Randall, Richard John. « Fluid-structure interaction of submerged shells ». Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/5446.

Texte intégral
Résumé :
A general three-dimensional hydroelasticity theory for the evaluation of responses has been adapted to formulate hydrodynamic coefficients for submerged shell-type structures. The derivation of the theory has been presented and is placed in context with other methods of analysis. The ability of this form of analysis to offer an insight into the physical behaviour of practical systems is demonstrated. The influence of external boundaries and fluid viscosity was considered separately using a flexible cylinder as the model. When the surrounding fluid is water, viscosity was assessed to be significant for slender structural members and flexible pipes and in situations where the clearance to an outer casing was slight. To validate the three-dimensional hydroelasticity theory, predictions of resonance frequencies and mode shapes were compared, with measured data from trials undertaken in enclosed tanks. These data exhibited differences due to the position of the test structures in relation to free and fixed boundaries. The rationale of the testing programme and practical considerations of instrumentation, capture and storage of data are described in detail. At first sight a relatively unsophisticated analytical method appeared to offer better correlation with the measured data than the hydroelastic solution. This impression was mistaken, the agreement was merely fortuitous as only the hydroelastic approach is capable of reproducing-the trends recorded in the experiments. The significance of an accurate dynamic analysis using finite elements and the influence of physical factors such as buoyancy on the predicted results are also examined.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Giannopapa, Christina-Grigoria. « Fluid structure interaction in flexible vessels ». Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413425.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wright, Stewart Andrew. « Aspects of unsteady fluid-structure interaction ». Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621939.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Altstadt, Eberhard, Helmar Carl et Rainer Weiß. « Fluid-Structure Interaction Investigations for Pipelines ». Forschungszentrum Rossendorf, 2003. https://hzdr.qucosa.de/id/qucosa%3A21726.

Texte intégral
Résumé :
The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Holder, Justin. « Fluid Structure Interaction in Compressible Flows ». University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159584692691518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Paton, Jonathan. « Computational fluid dynamics and fluid structure interaction of yacht sails ». Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/14036/.

Texte intégral
Résumé :
This thesis focuses on the numerical simulation of yacht sails using both computational fluid dynamics (CFD) and fluid structure interaction (FSI) modelling. The modelling of yacht sails using RANS based CFD and the SST turbulence model is justified with validation against wind tunnel studies (Collie, 2005; Wilkinson, 1983). The CFD method is found to perform well, with the ability to predict flow separation, velocity and pressure profiles satisfactorily. This work is extended to look into multiple sail interaction and the impact of the mast upon performance. A FSI solution is proposed next, coupling viscous RANS based CFD and a structural code capable of modelling anistropic laminate sails (RELAX, 2009). The aim of this FSI solution is to offer the ability to investigate sails' performance and flying shapes more accurately than with current methods. The FSI solution is validated with the comparison to flying shapes of offwind sails from a bespoke wind tunnel experiment carried out at the University of Nottingham. The method predicted offwind flying shapes to a greater level of accuracy than previous methods. Finally the CFD and FSI solution described here above is showcased and used to model a full scale Volvo Open 70 racing yacht, including multiple offwind laminate sails, mast, hull, deck and twisted wind profile. The model is used to demonstrate the potential of viscous CFD and FSI to predict performance and aid in the design of high performance sails and yachts. The method predicted flying shapes and performance through a range of realistic sail trims providing valuable data for crews, naval architects and sail designers.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gregson, James. « Fluid-structure interaction simulations in liquid-lead ». Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12340.

Texte intégral
Résumé :
An Eulerian compressible flow solver suitable for simulating liquid-lead flows involving fluid-structure interaction, cavitation and free surfaces was developed and applied to investigation of a magnetized target fusion reactor concept. The numerical methods used and results of common test cases are presented. Simulations were then performed to assess the smoothing properties of interacting mechanically generated shocks in liquid lead, as well as the early-time collapse behavior of cavities due to free surface reflection of such shocks. An empirical formula to estimate shock smoothness based on the shock smoothing results is presented, and issues related to shock driven cavity collapse in liquid liner magnetized target fusion reactors are presented and discussed.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Fluid-structure interaction"

1

Bungartz, Hans-Joachim, et Michael Schäfer, dir. Fluid-Structure Interaction. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34596-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sigrist, Jean-François. Fluid-Structure Interaction. Chichester, UK : John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118927762.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

International Conference on Fluid Structure Interaction (1st 2001 Chalkidikē, Greece). Fluid structure interaction. Southampton : WIT Press, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bazilevs, Yuri, Kenji Takizawa et Tayfun E. Tezduyar. Computational Fluid-Structure Interaction. Chichester, UK : John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118483565.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bungartz, Hans-Joachim, Miriam Mehl et Michael Schäfer, dir. Fluid Structure Interaction II. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

R, Ohayon, et United States. National Aeronautics and Space Administration., dir. Coupled fluid-structure interaction. [Washington, DC] : National Aeronautics and Space Administration, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

International Conference on Fluid Structure Interaction (2nd 2003 Cadiz, Spain). Fluid structure interaction II. Southampton : WIT, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Canary Islands) International Conference on Fluid Structure Interaction (7th 2013 Las Palmas. Fluid structure interaction VII. Sous la direction de Brebbia C. A, Rodríguez G. R et Wessex Institute of Technology. Southampton : WIT Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

International Conference on Fluid Structure Interaction (6th 2011 Orlando, Fla.). Fluid structure interaction VI. Sous la direction de Kassab, A. (Alain J.). Southampton, UK : WIT Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

International Conference on Fluid Structure Interaction (5th 2009 Chersonēsos, Crete, Greece). Fluid structure interaction V. Sous la direction de Brebbia C. A et Wessex Institute of Technology. Southampton : WIT, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Fluid-structure interaction"

1

Dolejší, Vít, et Miloslav Feistauer. « Fluid-Structure Interaction ». Dans Discontinuous Galerkin Method, 521–51. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Doyle, James F. « Structure-Fluid Interaction ». Dans Wave Propagation in Structures, 243–74. New York, NY : Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1832-6_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kleinstreuer, Clement. « Fluid–Structure Interaction ». Dans Fluid Mechanics and Its Applications, 435–79. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Souli, Mhamed. « Fluid-Structure Interaction ». Dans Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction, 51–108. Hoboken, NJ USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557884.ch2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yang, Z. « Fluid-Structure Interaction ». Dans Multiphysics Modeling with Application to Biomedical Engineering, 55–73. Boca Raton : CRC Press, 2021. : CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tu, Jiyuan, Kiao Inthavong et Kelvin Kian Loong Wong. « Computational Fluid Structure Interaction ». Dans Computational Hemodynamics – Theory, Modelling and Applications, 95–154. Dordrecht : Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9594-4_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Brebbia, C. A. « Fluid Structure Interaction Problems ». Dans Vibrations of Engineering Structures, 225–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82390-9_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Berezin, Ihor, Prasanta Sarkar et Jacek Malecki. « Fluid–Structure Interaction Simulation ». Dans Recent Progress in Flow Control for Practical Flows, 263–81. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50568-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Zhen. « Hydrodynomechanics : Fluid-Structure Interaction ». Dans Multiphysics in Porous Materials, 319–32. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93028-2_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Birken, Philipp. « Thermal Fluid Structure Interaction ». Dans Numerical Methods for Unsteady Compressible Flow Problems, 177–86. Boca Raton : Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025214-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Fluid-structure interaction"

1

Jecl, R., L. Škerget et J. Kramer. « Heat and mass transfer in compressible fluid saturated porous media with the boundary element method ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pelosi, M., et M. Ivantysynova. « A novel fluid-structure interaction model for lubricating gaps of piston machines ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yu, P., K. S. Yeo, X. Y. Wang et S. J. Ang. « A singular value decomposition based generalized finite difference method for fluid solid interaction problems ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ushijima, S., et N. Kuroda. « Multiphase modeling to predict finite deformations of elastic objects in free surface flows ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Belloli, M., B. Pizzigoni, F. Ripamonti et D. Rocchi. « Fluid-structure interaction between trains and noise-reduction barriers : numerical and experimental analysis ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fujita, S., T. Harima et H. Osaka. « Turbulent jets issuing from the rectangular nozzle with a rectangular notch at the midspan ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Liang, C. C., et W. M. Tseng. « Numerical study of water barriers produced by underwater explosions ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fujita, K. « Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Moe, G., et J. M. Niedzwecki. « Flow-induced vibrations of offshore flare towers and flare booms ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jurado, J. Á., A. León, S. Hernández et F. Nieto. « Aeroelastic analysis of long-span bridges using time domain methods ». Dans FLUID STRUCTURE INTERACTION 2009. Southampton, UK : WIT Press, 2009. http://dx.doi.org/10.2495/fsi090101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Fluid-structure interaction"

1

Benaroya, Haym, et Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA : Defense Technical Information Center, septembre 2000. http://dx.doi.org/10.21236/ada382782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Isaac, Daron, et Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA : Defense Technical Information Center, février 2003. http://dx.doi.org/10.21236/ada435321.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Barone, Matthew Franklin, Irina Kalashnikova, Daniel Joseph Segalman et Matthew Robert Brake. Reduced order modeling of fluid/structure interaction. Office of Scientific and Technical Information (OSTI), novembre 2009. http://dx.doi.org/10.2172/974411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schunk, Peter. Fluid-Structure Interaction of Deforming Porous Media. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1411752.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wood, Stephen L., et Ralf Deiterding. Shock-driven fluid-structure interaction for civil design. Office of Scientific and Technical Information (OSTI), novembre 2011. http://dx.doi.org/10.2172/1041422.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Schroeder, Erwin A. Infinite Elements for Three-Dimensional Fluid-Structure Interaction Problems. Fort Belvoir, VA : Defense Technical Information Center, novembre 1987. http://dx.doi.org/10.21236/ada189462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Barone, Matthew Franklin, et Jeffrey L. Payne. Methods for simulation-based analysis of fluid-structure interaction. Office of Scientific and Technical Information (OSTI), octobre 2005. http://dx.doi.org/10.2172/875605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhu, Minjie, et Michael Scott. Fluid-Structure Interaction and Python-Scripting Capabilities in OpenSees. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, août 2019. http://dx.doi.org/10.55461/vdix3057.

Texte intégral
Résumé :
Building upon recent advances in OpenSees, the goals of this project are to expand the framework’s Python scripting capabilities and to further develop its fluid–structure interaction (FSI) simulation capabilities, which are based on the particle finite-element method (PFEM). At its inception, the FSI modules in OpenSees were based on Python scripting. To accomplish FSI simulations in OpenSees, Python commands have been added for a limited number of pre-existing element and material commands, e.g., linear-elastic triangle elements and beam–column elements with Concrete01/Steel01 fiber sections. Incorporation of hundreds of constitutive models and element formulations under the Python umbrella for FSI and general OpenSees use remain to be done. Although the original scripting language, Tcl, in OpenSees is string based, powerful, and easy to learn, it is not suitable for mathematical computations. Recent trends in scripting languages for engineering applications have embraced more general, scientific languages such as Python, which has evolved to a large community with numerous libraries for numerical computing, data analysis, scientific visualization, and web development. These libraries can be utilized with the FSI simulation for tsunami analysis. Extending OpenSees to Python will help OpenSees keep pace with new scripting developments from the scientific computing community and make the framework more accessible to graduate students, who likely have learned Python as undergraduates.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tezduyar, Tayfun E. Multiscale and Sequential Coupling Techniques for Fluid-Structure Interaction Computations. Fort Belvoir, VA : Defense Technical Information Center, octobre 2012. http://dx.doi.org/10.21236/ada585768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Liszka, Tadeusz J., C. A. Duarte et O. P. Hamzeh. Hp-Meshless Cloud Method for Dynamic Fracture in Fluid Structure Interaction. Fort Belvoir, VA : Defense Technical Information Center, mars 2000. http://dx.doi.org/10.21236/ada376673.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie