Littérature scientifique sur le sujet « Flexible regression models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Flexible regression models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Flexible regression models"
Gurmu, Shiferaw, et John Elder. « Flexible Bivariate Count Data Regression Models ». Journal of Business & ; Economic Statistics 30, no 2 (avril 2012) : 265–74. http://dx.doi.org/10.1080/07350015.2011.638816.
Texte intégralO'Donnell, David, Alastair Rushworth, Adrian W. Bowman, E. Marian Scott et Mark Hallard. « Flexible regression models over river networks ». Journal of the Royal Statistical Society : Series C (Applied Statistics) 63, no 1 (11 juillet 2013) : 47–63. http://dx.doi.org/10.1111/rssc.12024.
Texte intégralNikulin, M., et Hong-Dar Isaac Wu. « Flexible regression models for carcinogenesis studies ». Journal of Mathematical Sciences 145, no 2 (août 2007) : 4880–93. http://dx.doi.org/10.1007/s10958-007-0322-z.
Texte intégralLee, Young K., Enno Mammen et Byeong U. Park. « Flexible generalized varying coefficient regression models ». Annals of Statistics 40, no 3 (juin 2012) : 1906–33. http://dx.doi.org/10.1214/12-aos1026.
Texte intégralDurrleman, Sylvain, et Richard Simon. « Flexible regression models with cubic splines ». Statistics in Medicine 8, no 5 (mai 1989) : 551–61. http://dx.doi.org/10.1002/sim.4780080504.
Texte intégralBonat, Wagner Hugo, et Célestin C. Kokonendji. « Flexible Tweedie regression models for continuous data ». Journal of Statistical Computation and Simulation 87, no 11 (23 avril 2017) : 2138–52. http://dx.doi.org/10.1080/00949655.2017.1318876.
Texte intégralDahl, Christian M., et Svend Hylleberg. « Flexible regression models and relative forecast performance ». International Journal of Forecasting 20, no 2 (avril 2004) : 201–17. http://dx.doi.org/10.1016/j.ijforecast.2003.09.002.
Texte intégralSantías, Francisco Reyes, Carmen Cadarso-Suárez et María Xosé Rodríguez-Álvarez. « Estimating hospital production functions through flexible regression models ». Mathematical and Computer Modelling 54, no 7-8 (octobre 2011) : 1760–64. http://dx.doi.org/10.1016/j.mcm.2010.11.087.
Texte intégralda Silva, Nívea B., Marcos O. Prates et Flávio B. Gonçalves. « Bayesian linear regression models with flexible error distributions ». Journal of Statistical Computation and Simulation 90, no 14 (2 juillet 2020) : 2571–91. http://dx.doi.org/10.1080/00949655.2020.1783261.
Texte intégralShaw, J. E. H. « Numerical Bayesian Analysis of Some Flexible Regression Models ». Statistician 36, no 2/3 (1987) : 147. http://dx.doi.org/10.2307/2348507.
Texte intégralThèses sur le sujet "Flexible regression models"
Mukherjee, Kathakali Ghosh. « Flexible regression models for functional neuroimaging ». Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7286/.
Texte intégralRoemmele, Eric S. « A Flexible Zero-Inflated Poisson Regression Model ». UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/38.
Texte intégralLynch, James Charles. « A flexible class of models for regression modelling of multivariate failure time data / ». Thesis, Connect to this title online ; UW restricted, 1996. http://hdl.handle.net/1773/9561.
Texte intégralFischer, Manfred M. « Neural networks. A class of flexible non-linear models for regression and classification ». Elgar, 2015. http://epub.wu.ac.at/4763/1/NN%2DHandbook%2Dchapter_Fischer_20120809.pdf.
Texte intégralBERNASCONI, DAVIDE PAOLO. « Dynamic prediction in survival analysis with binary non-reversible time-dependent treatment indicator ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/76772.
Texte intégralIn clinical studies it is often of interest to compare the survival experience of patients in two or more treatment groups. In some situations the categorization is not fixed at baseline but changes during the follow-up, where patients, for example, start from an initial treatment and either continue it or switch to an alternative one after some time (waiting time). Thus, treatment is a binary non reversible time-dependent variable. A typical problem is comparing outcomes of chemotherapy vs stem-cell transplantation in Acute Lymphoblastic Leukemia (ALL) where patients are treated initially with chemotherapy and during the follow-up they can receive bone marrow transplant. In this context, the standard Kaplan-Meier method is unreliable since it is affected by the immortal time bias. Two alternative non-parametric approaches were proposed in the literature. Andersen et al. (1983) suggests to classify patients at a landmark time which corresponds to the starting point for the estimation of the Kaplan-Meier survival curve, involving only patients still at risk at the landmark. The second, proposed by Simon and Makuch (1984), consists in dynamically updating in time the risk set of the two time-dependent treatment groups. Both methods were presented mostly relying on heuristic bases and without specifying the theoretical quantities corresponding to the proposed estimators. Thus, the interpretations of the curves estimated by the two methods was never clarified. When the focus is not on the overall survival experience but rather on profile-specific prediction, i.e. accounting for the individual characteristics of the subjects, one must resort to semi-parametric or parametric regression models. The Cox model is the most popular one but in the presence of time-varying effects and/or time-dependent covariates it cannot be used to obtain survival curves. Among the possible alternatives we considered the full parametric model by Hanley and Miettinen (2009) and the semi-parametric landmark regression model by Van Houwelingen (2007). The first is based on estimating the hazard function over time by applying a logistic regression to an expanded dataset created by splitting the observed survival time of each subject into a number of time-units and to treat the number of events in every single interval as a Binomial random variable. The second originates from the idea of fitting the Cox model to multiple subsets of data, each one created starting from a sliding landmark time point and including only the subjects at risk at the landmark; the treatment classification for these patients is frozen at that time allowing to dynamically update the time-dependent covariates in each model and to let the parameter estimates to vary in time. The aims of the dissertation are reviewing and developing methods for: 1) the description of the survival experience according to a binary time-dependent treatment indicator both from a fixed perspective and dynamically update in time; 2) the assessment of the impact on these quantities of prognostic factors, in particular the waiting time to transplant, through interpretable parameters; 3) the development of profile-specific predictions. In the first part of this work we wish to clarify the theoretical quantities estimated by the landmark and Simon-Makuch methods. In addition, we present a novel approach based on counterfactual questions and dynamic prediction, checking the validity of our findings using simulations. In the second part, we review the Hanley-Miettinen and landmark regression models and we show how to use them to properly estimate the effect of waiting time to transplant and to make profile-specific dynamic predictions on a real dataset on ALL, comparing the performance of the two models using simulations.
Luo, Zairen. « Flexible Pavement Condition Model Using Clusterwise Regression and Mechanistic-Empirical Procedure for Fatigue Cracking Modeling ». See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2005. http://www.ohiolink.edu/etd/view.cgi?toledo1133560069.
Texte intégralTypescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Engineering." Bibliography: leaves 90-99.
Hossain, Shahadut. « Dealing with measurement error in covariates with special reference to logistic regression model : a flexible parametric approach ». Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/408.
Texte intégralVerssani, Bruna Aparecida Wruck. « Modelo de regressão para sistemas reparáveis : um estudo da confiabilidade de colhedoras de cana-de-açúcar ». Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-22012019-173525/.
Texte intégralThe confiability analysis carries out an important role for durability studies and optimization of repair time in repairable systems. Repairable systems are equipments that returns to execute its function after a fail, for example, sugarcane harvester. This work aimed to propose modeling alternatives for complex systems with great variability in the behaviour of fail intensity function. It was proposed a new distribution on generalized odd log-logistic flexible Weibull (GOLLFW) and an Weibull regression model applied to potential law used to analyze repairable systems.It was presented the distribution family generalized odd log-logistic, was carried out a simulation study to verify some properties of maximum likelihood estimators and was included covariables in the fail time by regression model GOLLFW. To the regression analysis considering repairable systems, it was presented the main counting models for a single repairable system and it was performed an analysis of each model singly, then, it was considered more than two systems and it was added a Weibull regression model to the potential law process (PLP). The bimodality characteristic of GOLLFW distribution guaranteed the suitability and a better adjust to tested datas. While, the inclusion of covariables by regression model GOLLFW in the PLP allowed to model systems which traditionals counting process, PLP and renewal process, would not fit well.
Tran, Xuan Quang. « Les modèles de régression dynamique et leurs applications en analyse de survie et fiabilité ». Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0147/document.
Texte intégralThis thesis was designed to explore the dynamic regression models, assessing the sta-tistical inference for the survival and reliability data analysis. These dynamic regressionmodels that we have been considered including the parametric proportional hazards andaccelerated failure time models contain the possibly time-dependent covariates. We dis-cussed the following problems in this thesis.At first, we presented a generalized chi-squared test statisticsY2nthat is a convenient tofit the survival and reliability data analysis in presence of three cases: complete, censoredand censored with covariates. We described in detail the theory and the mechanism to usedofY2ntest statistic in the survival and reliability data analysis. Next, we considered theflexible parametric models, evaluating the statistical significance of them by usingY2nandlog-likelihood test statistics. These parametric models include the accelerated failure time(AFT) and a proportional hazards (PH) models based on the Hypertabastic distribution.These two models are proposed to investigate the distribution of the survival and reliabilitydata in comparison with some other parametric models. The simulation studies were de-signed, to demonstrate the asymptotically normally distributed of the maximum likelihood estimators of Hypertabastic’s parameter, to validate of the asymptotically property of Y2n test statistic for Hypertabastic distribution when the right censoring probability equal 0% and 20%.n the last chapter, we applied those two parametric models above to three scenes ofthe real-life data. The first one was done the data set given by Freireich et al. on thecomparison of two treatment groups with additional information about log white blood cellcount, to test the ability of a therapy to prolong the remission times of the acute leukemiapatients. It showed that Hypertabastic AFT model is an accurate model for this dataset.The second one was done on the brain tumour study with malignant glioma patients, givenby Sauerbrei & Schumacher. It showed that the best model is Hypertabastic PH onadding five significance covariates. The third application was done on the data set given by Semenova & Bitukov on the survival times of the multiple myeloma patients. We did not propose an exactly model for this dataset. Because of that was an existing oneintersection of survival times. We, therefore, suggest fitting other dynamic model as SimpleCross-Effect model for this dataset
Mackenzie, Monique L. « Flexible Mixed Models : Regression Splines and Thin-Plate Regression Splines in a Mixed Model Framework ». 2005. http://hdl.handle.net/2292/650.
Texte intégralRegression splines and thin-plate regression splines were fitted inside generalized linear mixed models with good results. Their role in prediction and as exploratory tools are examined. Regression splines were specified in advance using biological information and compared with knot positions chosen using the data available. A forwards selection procedure was used to choose knots for thin-plate regression splines, and both cross-validation and fit statistics were used to discriminate between competing models. Parameter bias was assessed using a parametric bootstrap in the generalized mixed model setting, and bias for both high and low variance data was compared. Model-based, bootstrap, and robust inference methods were used to assess parameter inference, and the impact of peculiar individuals on the models were examined. Forestry growth and mortality data is used for the modelling throughout. Model specification using biological information returned good results, and models with a relatively small number of well chosen knots outperformed models with larger numbers of relatively poorly placed knots. The generalized mixed model fixed effects estimates were found to be unbiased, but the model-based variance estimates were consistently too small. While variance estimates for terms with random effects were more realistic, robust measures of inference were consistently more reliable. For the normal errors models, model-based inference was only valid when complex covariance structures were specified or robust inference was used Generalized mixed models were found to be relatively robust to influential individuals while cross-validation enabled problematic individuals to be identified.
Livres sur le sujet "Flexible regression models"
Center, Ames Research, dir. On the reliable and flexible solution of practical subset regression problems. Moffett Field, Calif : National Aeronautics and Space Administration, Ames Research Center, 1987.
Trouver le texte intégralPark, Hyung. Flexible Regression Models for Estimating Interactions between a Treatment and Scalar/Functional Predictors. [New York, N.Y.?] : [publisher not identified], 2018.
Trouver le texte intégralHeller, Gillian Z., Vlasios Voudouris, Mikis D. Stasinopoulos, Robert A. Rigby et Fernanda de Bastiani. Flexible Regression and Smoothing. Taylor & Francis Group, 2020.
Trouver le texte intégralFlexible Regression and Smoothing : Using GAMLSS in R. Taylor & Francis Group, 2017.
Trouver le texte intégralDunson, David. Flexible Bayes regression of epidemiologic data. Sous la direction de Anthony O'Hagan et Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.1.
Texte intégralHeller, Gillian Z., Vlasios Voudouris, Mikis D. Stasinopoulos, Robert A. Rigby et Fernanda De Bastiani. Flexible Regression and Smoothing : Using GAMLSS in R. Taylor & Francis Group, 2017.
Trouver le texte intégralFlexible Regression and Smoothing : Using GAMLSS in R. Taylor & Francis Group, 2017.
Trouver le texte intégralHeller, Gillian Z., Vlasios Voudouris, Mikis D. Stasinopoulos, Robert A. Rigby et Fernanda De Bastiani. Flexible Regression and Smoothing : Using GAMLSS in R. Taylor & Francis Group, 2017.
Trouver le texte intégralHeller, Gillian Z., Vlasios Voudouris, Mikis D. Stasinopoulos, Robert A. Rigby et Fernanda De Bastiani. Flexible Regression and Smoothing : Using GAMLSS in R. Taylor & Francis Group, 2017.
Trouver le texte intégralChapitres de livres sur le sujet "Flexible regression models"
Au, Charles, et S. T. Boris Choy. « An Application of Bayesian Seemingly Unrelated Regression Models with Flexible Tails ». Dans Springer Proceedings in Mathematics & ; Statistics, 115–25. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54084-9_11.
Texte intégralRadwan, Mostafa M., Mostafa A. Abo-Hashema, Hamdy P. Faheem et Mostafa D. Hashem. « ANN-Based Fatigue and Rutting Prediction Models Versus Regression-Based Models for Flexible Pavements ». Dans Recent Developments in Pavement Engineering, 117–33. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34196-1_9.
Texte intégralTitterington, D. M. « Optimal Design in Flexible Models, Including Feed-Forward Networks and Nonparametric Regression ». Dans Nonconvex Optimization and Its Applications, 261–73. Boston, MA : Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3419-5_23.
Texte intégralMantovan, Pietro, et Andrea Pastore. « Flexible Dynamic Regression Models for Real-time Forecasting of Air Pollutant Concentration ». Dans Studies in Classification, Data Analysis, and Knowledge Organization, 265–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-17111-6_22.
Texte intégralMigliorati, Sonia, Agnese M. Di Brisco et Andrea Ongaro. « The Flexible Beta Regression Model ». Dans Data Analysis and Applications 1, 39–52. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119597568.ch3.
Texte intégralKriksciuniene, Dalia, Virgilijus Sakalauskas, Ivana Ognjanović et Ramo Šendelj. « Discovering Healthcare Data Patterns by Artificial Intelligence Methods ». Dans Intelligent Systems for Sustainable Person-Centered Healthcare, 185–210. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79353-1_10.
Texte intégralJung, Yu-Jin, et Yong-Ik Yoon. « Flexible Multi-level Regression Model for Prediction of Pedestrian Abnormal Behavior ». Dans Advances in Parallel and Distributed Computing and Ubiquitous Services, 137–43. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0068-3_17.
Texte intégralMiao, Yinsen, Jeong Hwan Kook, Yadong Lu, Michele Guindani et Marina Vannucci. « Scalable Bayesian variable selection regression models for count data ». Dans Flexible Bayesian Regression Modelling, 187–219. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-815862-3.00015-9.
Texte intégralRahman, Mohammad Arshad, et Shubham Karnawat. « Flexible Bayesian Quantile Regression in Ordinal Models ». Dans Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling : Part B, 211–51. Emerald Publishing Limited, 2019. http://dx.doi.org/10.1108/s0731-90532019000040b011.
Texte intégralJ., Jagan, Pijush Samui et Barnali Dixon. « Determination of Rate of Medical Waste Generation Using RVM, MARS and MPMR ». Dans Advances in Environmental Engineering and Green Technologies, 1–18. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9723-2.ch001.
Texte intégralActes de conférences sur le sujet "Flexible regression models"
Okuno, Alex, et Alberto Ferreira. « Generalized linear tree : a flexible algorithm for predicting continuous variables ». Dans LatinX in AI at International Conference on Machine Learning 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai2021072420.
Texte intégralUsta, I. « Robust regression models based on flexible maximum entropy distributions ». Dans International Conference on Quality, Reliability, Risk, Maintenance and Safety Engineering, sous la direction de Y. M. Kantar. Southampton, UK : WIT Press, 2015. http://dx.doi.org/10.2495/qr2mse140421.
Texte intégralGonzalez, Gabriel M., José Renato M. de Sousa, Luis V. S. Sagrilo, Ricardo R. Martins et Djalene M. Rocha. « A Symbolic Regression Formulation to Estimate the Lateral Buckling Resistance of Tensile Armors in Flexible Pipes ». Dans ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95510.
Texte intégralHatakeyama, Waku, Cong Wang et Lu Lu. « Nonparametric Tool Path Compensation for Machining Flexible Parts ». Dans ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9640.
Texte intégralde Sousa, José Renato M., Marcelo K. Protasio et Luis V. S. Sagrilo. « Equivalent Layer Approaches to Predict the Bisymmetric Hydrostatic Collapse Strength of Flexible Pipes ». Dans ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78146.
Texte intégralKocher, Lyle, Ed Koeberlein, D. G. Van Alstine, Karla Stricker et Greg Shaver. « Physically-Based Volumetric Efficiency Model for Diesel Engines Utilizing Variable Intake Valve Actuation ». Dans ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5997.
Texte intégralLin, Tao, Mokhles Mezghani, Chicheng Xu et Weichang Li. « Machine Learning for Multiple Petrophysical Properties Regression Based on Core Images and Well Logs in a Heterogenous Reservoir ». Dans SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206089-ms.
Texte intégralAzarkhail, M., et M. Modarres. « A Novel Bayesian Framework for Uncertainty Management in Physics-Based Reliability Models ». Dans ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41333.
Texte intégralYılmaz, Yavuz, Rainer Kurz, Ayşe Özmen et Gerhard-Wilhelm Weber. « A New Algorithm for Scheduling Condition-Based Maintenance of Gas Turbines ». Dans ASME Turbo Expo 2015 : Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43545.
Texte intégralShui, Huanyi, Xiaoning Jin et Jun Ni. « Roll-to-Roll Manufacturing System Modeling and Analysis by Stream of Variation Theory ». Dans ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8722.
Texte intégralRapports d'organisations sur le sujet "Flexible regression models"
Lu, Tianjun, Jian-yu Ke, Fynnwin Prager et Jose N. Martinez. “TELE-commuting” During the COVID-19 Pandemic and Beyond : Unveiling State-wide Patterns and Trends of Telecommuting in Relation to Transportation, Employment, Land Use, and Emissions in Calif. Mineta Transportation Institute, août 2022. http://dx.doi.org/10.31979/mti.2022.2147.
Texte intégralGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs et Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, octobre 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Texte intégral