Littérature scientifique sur le sujet « Finites elements method »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Finites elements method ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Finites elements method"

1

Lugo Jiménez, Abdul Abner, Guelvis Enrique Mata Díaz et Bladismir Ruiz. « A comparative analysis of methods : mimetics, finite differences and finite elements for 1-dimensional stationary problems ». Selecciones Matemáticas 8, no 1 (30 juin 2021) : 1–11. http://dx.doi.org/10.17268/sel.mat.2021.01.01.

Texte intégral
Résumé :
Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present complex geometries, boundary or initial conditions, or involve non-linear differential equations. Currently, the number of problems that are modeled with partial differential equations are diverse and these must be addressed numerically, so that the results obtained are more in line with reality. In this work, a comparison of the classical numerical methods such as: the finite difference method (FDM) and the finite element method (FEM), with a modern technique of discretization called the mimetic method (MIM), or mimetic finite difference method or compatible method, is approached. With this comparison we try to conclude about the efficiency, order of convergence of these methods. Our analysis is based on a model problem with a one-dimensional boundary value, that is, we will study convection-diffusion equations in a stationary regime, with different variations in the gradient, diffusive coefficient and convective velocity.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Barros, M. L. C., A. G. Batista, M. J. S. Sena, A. L. Amarante Mesquita et C. J. C. Blanco. « Application of a shallow water model to analyze environmental effects in the Amazon Estuary Region : a case study of the Guajará Bay (Pará – Brazil) ». Water Practice and Technology 10, no 4 (1 décembre 2015) : 846–59. http://dx.doi.org/10.2166/wpt.2015.104.

Texte intégral
Résumé :
This study used hydrodynamic modeling to investigate the hydrodynamic circulation and pollutant transport of the Guajará Bay-PA. The hydrodynamic modeling was performed using the classical Saint-Venant model for shallow waters. The pollutant dispersion was described using a Lagrangian deterministic model that simulates advective–diffusive transport with kinetic reactions for two-dimensional flow. The finites elements method was used to solve the Saint-Venant and transport equations. The bathymetry data were obtained by combining the data from nautical charts provided by the Directorate of Hydrography and Navigation of the Brazilian Navy. The substrate grain size data for the determination of rugosity were obtained from literature. Data on the tides, the wind and the flowrate of the rivers that form the Guajará bay were used as the boundary conditions in the simulation of the hydrodynamic circulation and the pollutant dispersion scenarios. Flood and ebb tide patterns were simulated, which enabled the contaminant plumes of the Guajará Bay to be simulated. An analysis of the simulated fecal coliform plumes indicated that these pollutants that are produced in the metropolitan region of Belém flow towards the beaches in the North, especially those in the Icoaraci and Outeiro districts, affecting the bathing water quality.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bradji, Abdallah, et Jürgen Fuhrmann. « Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method ». Mathematica Bohemica 139, no 2 (2014) : 125–36. http://dx.doi.org/10.21136/mb.2014.143843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kulkarni, Sachin M., et Dr K. G. Vishwananth. « Analysis for FRP Composite Beams Using Finite Element Method ». Bonfring International Journal of Man Machine Interface 4, Special Issue (30 juillet 2016) : 192–95. http://dx.doi.org/10.9756/bijmmi.8181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ito, Yasuhisa, Hajime Igarashi, Kota Watanabe, Yosuke Iijima et Kenji Kawano. « Non-conforming finite element method with tetrahedral elements ». International Journal of Applied Electromagnetics and Mechanics 39, no 1-4 (5 septembre 2012) : 739–45. http://dx.doi.org/10.3233/jae-2012-1537.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yamada, T., et K. Tani. « Finite element time domain method using hexahedral elements ». IEEE Transactions on Magnetics 33, no 2 (mars 1997) : 1476–79. http://dx.doi.org/10.1109/20.582539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Romero, J. L., et Miguel A. Ortega. « Splines generalizados y solución nodal exacta en el método de elementos finites ». Informes de la Construcción 51, no 464 (30 décembre 1999) : 41–85. http://dx.doi.org/10.3989/ic.1999.v51.i464.872.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Burman, Erik, et Peter Hansbo. « Fictitious domain finite element methods using cut elements : II. A stabilized Nitsche method ». Applied Numerical Mathematics 62, no 4 (avril 2012) : 328–41. http://dx.doi.org/10.1016/j.apnum.2011.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mikhaylovskiy, Denis, et Dmytro Matyuschenko. « Numerical researches of DGRP-type experimental frames using the finite elements method ». Odes’kyi Politechnichnyi Universytet. Pratsi, no 2 (20 août 2016) : 11–15. http://dx.doi.org/10.15276/opu.2.49.2016.04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Matveev, Aleksandr. « Generating finite element method in constructing complex-shaped multigrid finite elements ». EPJ Web of Conferences 221 (2019) : 01029. http://dx.doi.org/10.1051/epjconf/201922101029.

Texte intégral
Résumé :
The calculations of three-dimensional composite bodies based on the finite element method with allowance for their structure and complex shape come down to constructing high-dimension discrete models. The dimension of discrete models can be effectively reduced by means of multigrid finite elements (MgFE). This paper proposes a generating finite element method for constructing two types of three-dimensional complex-shaped composite MgFE, which can be briefly described as follows. An MgFE domain of the first type is obtained by rotating a specified complex-shaped plane generating single-grid finite element (FE) around a specified axis at a given angle, and an MgFE domain of the second type is obtained by the parallel displacement of a generating FE in a specified direction at a given distance. This method allows designing MgFE with one characteristic dimension significantly larger (smaller) than the other two. The MgFE of the first type are applied to calculate composite shells of revolution and complex-shaped rings, and the MgFE of the second type are used to calculate composite cylindrical shells, complex-shaped plates and beams. The proposed MgFE are advantageous because they account for the inhomogeneous structure and complex shape of bodies and generate low-dimension discrete models and solutions with a small error.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Finites elements method"

1

Starkloff, Hans-Jörg. « Stochastic finite element method with simple random elements ». Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800596.

Texte intégral
Résumé :
We propose a variant of the stochastic finite element method, where the random elements occuring in the problem formulation are approximated by simple random elements, i.e. random elements with only a finite number of possible values.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kleditzsch, Stefan, et Birgit Awiszus. « Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods ». Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-97124.

Texte intégral
Résumé :
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rabadi, Kairas. « PERFORMANCE OF INTERFACE ELEMENTS IN THE FINITE ELEMENT METHOD ». Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2188.

Texte intégral
Résumé :
The objective of this research is to assess the performance of interface elements in the finite element method. Interface elements are implemented in the finite element codes such as MSC.NASTRAN, which is used in this study. Interface elements in MSC.NASTRAN provide a tool to transition between a shell-meshed region to another shell-meshed region as well as from a shell-meshed region to a solid-meshed region. Often, in practice shell elements are layered on shell elements or on solid elements without the use of interface elements. This is potentially inaccurate arising in mismatched degrees of freedom. In the case of a shell-to-shell interface, we consider the case in which the two regions have mismatched nodes along the boundary. Interface elements are used to connect these mismatched nodes. The interface elements are especially useful in global/local analysis, where a region with a dense mesh interfaces to a region with a less dense mesh. Interface elements are used to help avoid using special transition elements between two meshed regions. This is desirable since the transition elements can be severely distorted and cause poor results. Accurate results are obtained in shell-shell and shell-solid combinations. The most interesting result is that not using interface elements can lead to severe inaccuracies. This difficulty is illustrated by computing the stress concentration of a sharp elliptical hole.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Styles APA, Harvard, Vancouver, ISO, etc.
4

Adams, Leila. « Finite element method using vector finite elements applied to eddy current problems ». Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/9992.

Texte intégral
Résumé :
Vector fields found in electromagnetics are fundamentally different to vector fields found in other research areas such as structural mechanics. Electromagnetic vector fields possess different physical behaviour patterns and different properties in comparison to the other vector fields and therein lies the necessity of the development of a finite element which would be able to cater for these differences . The vector finite element was then developed and used within the finite element method specifically for the approximation of electromagnetic problems. This dissertation investigates the partial differential equation that governs eddy current behaviour. A finite element algorithm is coded and used to solve this partial differential equation and produce vector field simulations for fundamental eddy current problems.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dietzsch, Julian. « Implementierung gemischter Finite-Element-Formulierungen für polykonvexe Verzerrungsenergiefunktionen elastischer Kontinua ». Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-217381.

Texte intégral
Résumé :
In der vorliegenden Arbeit wird ein gemischtes Element gegen Locking-Effekte untersucht. Dazu wird ein Fünf-Feld-Hu-Washizu-Funktional (CoFEM-Element) für lineare und quadratische Hexaeder-Elemente unter einer hyperelastischen, isotropen, polykonvexen sowie einer transversal-isotropen Materialformulierung implementiert. Die resultierenden nichtlinearen Gleichungen werden mithilfe eines Mehrebenen-NEWTON-RAPHSON-Verfahren unter Beachtung einer konsistenten Linearisierung gelöst. Als repräsentatives Beispiel der numerischen Untersuchungen dient der einseitig eingespannte Cook-Balken mit einer quadratischen Druckverteilung am Rand. Zur Beurteilung des CoFEM-Elements wird das räumliche Konvergenzverhalten für unterschiedliche Polynomgrade und für verschiedene Netze unter Beachtung der algorithmischen Effizienz untersucht
This paper presents a mixed finite element formulation of Hu-Washizu type (CoFEM) designed to reduce locking effects with respect to a linear and quadratic approximation in space. We consider a hyperelastic, isotropic, polyconvex material formulation as well as transverse isotropy. The resulting nonlinear algebraic equations are solved with a multilevel NEWTON-RAPHSON method. As a numerical example serves a cook-like cantilever beam with a quadratic distribution of in-plane load on the Neumann boundary. We analyze the spatial convergence with respect to the polynomial degree of the underlying Lagrange polynomials and with respect to the level of mesh refinement in terms of algorithmic efficiency
Styles APA, Harvard, Vancouver, ISO, etc.
6

Góis, Wesley. « Método dos elementos finitos generalizados em formulação variacional mista ». Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14072006-112127/.

Texte intégral
Résumé :
Este trabalho trata da combinação entre a formulação híbrida-mista de tensão (FHMT) (Freitas et al. (1996)), para a elasticidade plana, com o método dos elementos finitos generalizados (MEFG), Duarte et al. (2000). O MEFG se caracteriza como uma forma não-convencional do método dos elementos finitos (MEF) que resulta da incorporação a este de conceitos e técnicas dos métodos sem malha, como o enriquecimento nodal proposto do método das nuvens “hp”. Como na FHMT são aproximados dois campos no domínio (tensão e deslocamento) e um no contorno (deslocamento), diferentes possibilidades de enriquecimento nodal são exploradas. Para a discretização do modelo híbrido-misto empregam-se elementos finitos quadrilaterais com funções de forma bilineares para o domínio e elementos lineares para o contorno. Essas funções são enriquecidas por funções polinomiais, trigonométricas, polinômios que proporcionam distribuição de tensões auto-equilibradas ou mesmo funções especiais relacionadas às soluções dos problemas de fratura. Uma extensão do teste numérico abordado em Zienkiewicz et al. (1986) é proposta como investigação inicial das condições necessárias para garantia de estabilidade da resposta numérica. O estudo da estabilidade é completado com a análise da condição de Babuška-Brezzi (inf-sup). Esta condição é aplicada nos elementos finitos quadrilaterais híbridos-mistos enriquecidos por meio de um teste numérico, denominado de inf-sup teste, desenvolvido com base no trabalho de Chapelle e Bathe (1993). Exemplos numéricos revelam que a FHMT é uma interessante alternativa para obtenção de boas estimativas para os campos de tensões e deslocamentos, usando-se enriquecimento sobre alguns nós de malhas pouco refinadas
This work presents a combination of hybrid-mixed stress model formulation (HMSMF) (Freitas et al. (1996)), to treat plane elasticity problems, with generalized finite element method (GFEM), (Duarte et al. (2000)). GFEM is characterized as a nonconventional formulation of the finite element method (FEM). GFEM is the result of the incorporation of concepts and techniques from meshless methods. One example of these techniques is the nodal enrichment that was formulated in the “hp” clouds method. Since two fields in domain (stress and displacement) and one in boundary (displacement) are approximated in the HMSMF, different possibilities of nodal enrichment are tested. For the discretization of the hybrid-mixed model quadrilateral finite elements with bilinear shape functions for the domain and linear elements for the boundary were employed. These functions are enriched with polynomial functions, trigonometric functions, polynomials that generate self-equilibrated stress distribution, or, even special functions connected with solutions of fracture problems. An extension of the numerical test cited in Zienkiewicz et al. (1986) is proposed as initial investigation of necessary conditions to assure the stability of the numerical answer. The stability study is completed with the analysis of the Babuška-Brezzi (inf-sup) condition. This last condition is applied to hybrid-mixed enrichment quadrilaterals finite elements by means of a numerical test, denominated inf-sup test, which was developed based on paper of Chapelle and Bathe (1993). Numerical examples reveal that HMSMF is an interesting alternative to obtain good estimates of the stress and displacement fields, using enrichment over some nodes of poor meshes
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tseng, Gordon Bae-Ji. « Investigation of tetrahedron elements using automatic meshing in finite element analysis / ». Online version of thesis, 1992. http://hdl.handle.net/1850/10699.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Neto, Dorival Piedade. « Sobre estratégias de resolução numérica de problemas de contato ». Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14072009-165646/.

Texte intégral
Résumé :
Os problemas de contato representam uma classe de problemas da mecânica dos sólidos para a qual a não-linearidade é introduzida pela alteração das condições de contorno, as quais só podem ser determinadas no decorrer do processo de resolução. O presente trabalho trata dos problemas de contato abordando aspectos de sua formulação e implementação numérica. Apresentam-se, em particular, as formulações de dois diferentes tipos de elemento de contato revendo-se, mais detalhadamente, o tratamento numérico das restrições decorrentes de contato. Algumas estratégias para resolução computacional desta classe de problemas, consistindo em técnicas de otimização, foram implementadas num programa computacional de elementos finitos e avaliadas comparativamente por meio de exemplos numéricos com diferentes graus de complexidade.
Contact problems represent a class of solid mechanics problems for which the nonlinear behavior is caused by the change of the boundary conditions during the solution process. The present work treats contact problems observing aspects of its formulation and numerical implementation. Specifically, the formulation for two different contact elements is presented, analyzing, in details, the numerical formulation that results from the contact. Some strategies for the computational solution of this class of problems, given by optimization techniques, were implemented in a finite element computational program and were compared and evaluated by numerical examples with different levels of complexity.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Fernandes, Daniel Thomas. « Métodos de Elementos Finitos e Diferenças Finitas para o Problema de Helmholtz ». Laboratório Nacional de Computação Científica, 2009. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=167.

Texte intégral
Résumé :
É bem sabido que métodos clássicos de elementos finitos e diferenças finitas para o problema de Helmholtz apresentam efeito de poluição, que pode deteriorar seriamente a qualidade da solução aproximada. Controlar o efeito de poluição é especialmente difícil quando são utilizadas malhas não uniformes. Para malhas uniformes com elementos quadrados são conhecidos métodos (p. e. o QSFEM, proposto por Babuska et al) que minimizam a poluição. Neste trabalho apresentamos inicialmente dois métodos de elementos finitos de Petrov-Galerkin com formulação relativamente simples, o RPPG e o QSPG, ambos com razoável robustez para certos tipos de distorções dos elementos. O QSPG apresenta ainda poluição mínima para elementos quadrados. Em seguida é formulado o QOFD, um método de diferenças finitas aplicável a malhas não estruturadas. O QOFD apresenta grande robustez em relação a distorções, mas requer trabalho extra para tratar problemas não homogêneos ou condições de contorno não essenciais. Finalmente é apresentado um novo método de elementos finitos de Petrov-Galerkin, o QOPG, que é formulado aplicando a mesma técnica usada para obter a estabilização do QOFD, obtendo assim a mesma robustez em relação a distorções da malha, com a vantagem de ser um método variacionalmente consistente. Resultados numéricos são apresentados ilustrando o comportamento de todos os métodos desenvolvidos em comparação com os métodos de Galerkin, GLS e QSFEM.
It is well known that classical finite elements or finite difference methods for Helmholtz problem present pollution effects that can severely deteriorate the quality of the approximate solution. To control pollution effects is especially difficult on non uniform meshes. For uniform meshes of square elements pollution effects can be minimized with the Quasi Stabilized Finite Element Method (QSFEM) proposed by Babusv ska el al, for example. In the present work we initially present two relatively simple Petrov-Galerkin finite element methods, referred here as RPPG (Reduced Pollution Petrov-Galerkin) and QSPG (Quasi Stabilized Petrov-Galerkin), with reasonable robustness to some type of mesh distortion. The QSPG also shows minimal pollution, identical to QSFEM, for uniform meshes with square elements. Next we formulate the QOFD (Quasi Stabilized Finite Difference) method, a finite difference method for unstructured meshes. The QOFD shows great robustness relative to element distortion, but requires extra work to consider non-essential boundary conditions and source terms. Finally we present a Quasi Optimal Petrov-Galerkin (QOPG) finite element method. To formulate the QOPG we use the same approach introduced for the QOFD, leading to the same accuracy and robustness on distorted meshes, but constructed based on consistent variational formulation. Numerical results are presented illustrating the behavior of all methods developed compared to Galerkin, GLS and QSFEM.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cardoso, Jose Roberto. « Problemas de campos eletromagnéticos estáticos e dinâmicos ; Uma abordagem pelo método dos elementos finitos ». Universidade de São Paulo, 1986. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-11072017-082059/.

Texte intégral
Résumé :
A ideia de realizar este trabalho surgiu durante do curso de pós-graduação, ministrado pelo Prof. M. Drigas, \"Tópicos especiais sobre máquinas elétricas\", realizado no 2º semestre de 1980 na EPUSP, onde foi observada a necessidade do conhecimento das distribuições de campos magnéticos em dispositivos eletromecânicos com o objetivo de se prever seu desempenho na fase de projeto. Nesta época, já havia sido apresentada a tese do Prof. Janiszewski, o primeiro trabalho, de nosso conhecimento realizado no Brasil nesta área, onde foi desenvolvida a técnica de resolução de problemas de Campos Magnéticos em Regime Estacionário, que, evidentemente, não pode ser aplicada na resolução de problemas onde a variável tempo está envolvida; baseado neste tese, em 1982 o Prof. Luiz Lebensztajn, reproduziu o trabalho do Dr. Janiszewski o qual foi aplicado para verificar a consistência dos resultados práticos na tese de Livre Docência do Prof.. Dr. Aurio Gilberto Falcone. As formulações mais frequentes do Método dos Elementos Finitos (MEF), publicada nos periódicos internacionais, são baseadas no Cálculo Variacional, onde o sistema de equações algébricas não linear resultante, é derivado a partir da obtenção do extremo de uma funcional que em algumas situações não pode ser obtida, limitando assim sua aplicação. Em decorrência deste fato, o primeiro objetivo deste trabalho foi organizar os procedimentos para obtenção do sistema de equações de MEF aplicado à resolução de problemas de campo descritos por equações diferenciais não lineares, sem a necessidade. Algumas contribuições interessantes são encontradas no Capítulo II, referente à formulação do MEF para problemas de campo descrito por operadores diferenciais não auto-adjuntos.No Capítulo III são apresentadas as técnicas de montagem das matrizes, bem como aquelas de introdução das condições de contorno, originárias deste método, que muito embora sejam técnicas de aplicação corriqueiras, ajudarão em muito o pesquisador iniciante nesta área, sem a necessidade de recorrer a outro texto. No Capítulo VI são apresentadas as formulações necessárias para a solução de problemas de campos eletromagnéticos estáticos, para elementos de quatro lados retos (e curvos) assim como a técnica utilizada na obtenção da relutividade em meios não lineares. No Capítulo V são tratados os problemas de campo, onde a variável tempo está envolvida, permitindo assim a resolução de uma série enorme de problemas referentes aos campos de natureza eletromagnética, tais como os fenômenos transitórios e o Regime Permanente Senoidal. Os aspectos computacionais ligados ao trabalho estão expostos no Capítulo VI, onde são apresentadas as rotinas de resolução do sistema de equações resultante adaptadas às particularidades do problema, e as rotinas de integração numérica de problemas descrito por equações diferenciais dependentes do tempo de primeira e segunda ordem. Algumas técnicas apresentadas nestes Capítulos, são aplicadas espe3cificamente para a obtenção da distribuição de campo magnético no Capitulo VII deste trabalho, com o objetivo de analisar o desempenho de um transformador em regime transitório, onde é confirmada a consistência do método.
The idea of making this work came during a graduation course, \" Special topics on electric machines\", lectured by Prof. Dr. M. Drigas during the 2nd semester of 1980 at EPUSP, when the need of knowing the distribution of magnetic fields in electromechanics devices was notices, in order to foresse its performance during design. At that time, the first work about this subject realized made in Brazil was presented in prof. Janiszewski\'s thesis, where a technique was developed to solve Steady-State Magnetic Fields. However, it is clear that when the time variable is considered, this technique cannot be applied. The usual formulations of the Finite Element Method, published in international journals, was based on Variational Calculations, where the resulting non-linear algebraic equations system is derived from the extreme of a functional, which sometimes cannot be obtained, limiting in this way its application. Consequently, the first aim of this work is to organize procedures to obtain the Finite Method equations system, in order solve non-linear differential equations of fields, without the need of a previous functional for the problem. In Chapter II, one will find some interesting contributions referred to the Finite Element Method formulation, in the description of field problems by the use of non self-adjacent differentials operations.Matrix building techniques are presented in Chapter III, as well as the introduction of boundary conditions in this method. In spite of being an ordinary technique, it will help the beginners a lot, eliminating the need of other sources. Chapter IV presents the necessary formulations, which solve static electromagnetic fields for elements of four square (and curved) sides, and the technique used in the determination of non-linear media reluctivity. In Chapter V, the time variable of electromagnetic fields is treated, making possible the solution of problems of this nature, such as transient phenomena and sinusoidal steady-state. Computer aspects of the work are shown in Chapter VI, presenting resolution routines of the equation system fitted to the problem, and numeric integration routines described by first and second order differential equations, which depend on the time. Some techniques showed in those previous Chapters are specifically used in Chapter VII to obtain the magnetic field distribution, which analyses transformer performance during transients. The coherence of the method is also confirmed.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Finites elements method"

1

1943-, Brauer John R., dir. What every engineer should know about finite element analysis. New York : M. Dekker, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

L, Logan Daryl, dir. A first course in the finite element method. 3e éd. Pacific Grove, CA : Brooks/Cole, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Logan, Daryl L. A first course in the finite element method. 2e éd. Boston : PWS-Kent Pub. Co, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

A first course in the finite element method. Boston : PWS Engineering, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Finite Elemente : Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5e éd. Berlin : Springer, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

N, Rossettos John, dir. Finite-element method : Basic technique and implementation. Mineola, N.Y : Dover Publications, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

R, Whiteman J., et Conference on the Mathematics of Finite Elements and Applications (8th : 1993 : Brunel University), dir. The Mathematics of finite elements and applications : Highlights 1993. Chichester : Wiley, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wriggers, P. Nonlinear finite element methods. Berlin : Springer, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lyu, Yongtao. Finite Element Method. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dhatt, Gouri, Gilbert Touzot et Emmanuel Lefrançois. Finite Element Method. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118569764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Finites elements method"

1

Lyu, Yongtao. « Finite Element Analysis Using 3D Elements ». Dans Finite Element Method, 159–69. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Henwood, David, et Javier Bonet. « Towards a systematic method ». Dans Finite Elements, 37–50. London : Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-13898-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bathe, Klaus-Jürgen. « The finite element method with “overlapping finite elements” ». Dans Insights and Innovations in Structural Engineering, Mechanics and Computation, 2–7. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ern, Alexandre, et Jean-Luc Guermond. « Projection methods ». Dans Finite Elements III, 255–66. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57348-5_74.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Otsuru, Toru, Takeshi Okuzono, Noriko Okamoto et Yusuke Naka. « Finite Element Method ». Dans Computational Simulation in Architectural and Environmental Acoustics, 53–78. Tokyo : Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kuna, Meinhard. « Finite Element Method ». Dans Solid Mechanics and Its Applications, 153–92. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tekkaya, A. Erman, et Celal Soyarslan. « Finite Element Method ». Dans CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16699-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Öchsner, Andreas. « Finite Element Method ». Dans A Project-Based Introduction to Computational Statics, 95–238. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58771-0_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Koshiba, Masanori. « Finite Element Method ». Dans Optical Waveguide Theory by the Finite Element Method, 1–51. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chaskalovic, Joël. « Finite-Element Method ». Dans Mathematical and Numerical Methods for Partial Differential Equations, 63–109. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03563-5_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Finites elements method"

1

Addessi, D., P. Di Re, C. Gatta et E. Sacco. « Multiscale finite element modeling linking shell elements to 3D continuum ». Dans 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mirotznik, Mark S., Dennis W. Prather et Joseph N. Mait. « Hybrid finite element-boundary element method for vector modeling diffractive optical elements ». Dans Photonics West '96, sous la direction de Ivan Cindrich et Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Favier, J. F., et M. Kremmer. « Modeling a Particle Metering Device Using the Finite Wall Method ». Dans Third International Conference on Discrete Element Methods. Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shen, J. « A study of characteristic element length for higher-order finite elements ». Dans Aerospace Science and Engineering. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902677-33.

Texte intégral
Résumé :
Abstract. The utilization of a fracture energy regularization technique, based on the crack band model, can effectively resolve the issue of mesh-size dependency in the finite element modelling of quasi-brittle structures. However, achieving accurate results requires proper estimation of the characteristic element length in the finite element method. This study presents practical calculation methods for the characteristic element length, particularly for higher-order finite elements based on the Carrera Unified Formulation (CUF). Additionally, a modified Mazars damage model that incorporates fracture energy regularization is employed for damage analysis in quasi-brittle materials. An experimental benchmark is adopted then for validation, and the result shows that the proposed methods ensure accurate regularization of fracture energy and provide mesh-independent structural behaviors.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Komodromos, Petros I., et John R. Williams. « On the Simulation of Deformable Bodies Using Combined Discrete and Finite Element Methods ». Dans Third International Conference on Discrete Element Methods. Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Salami, M. Reza, et Farshad Amini. « Numerical Model for the Implementation of Discontinuous Deformation Analysis in Finite Element Mesh ». Dans Third International Conference on Discrete Element Methods. Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Owen, D. R. J., Y. T. Feng, M. G. Cottrel et J. Yu. « Discrete / Finite Element Modelling of Industrial Applications with Multi-Fracturing and Particulate Phenomena ». Dans Third International Conference on Discrete Element Methods. Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Prather, Dennis W., Mark S. Mirotznik et Joseph N. Mait. « Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method ». Dans Photonics West '96, sous la direction de Ivan Cindrich et Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239612.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yang, X. S., R. W. Lewis, D. T. Gethin, R. S. Ransing et R. C. Rowe. « Discrete-Finite Element Modelling of Pharmaceutical Powder Compaction : A Two-Stage Contact Detection Algorithm for Non-Spherical Particles ». Dans Third International Conference on Discrete Element Methods. Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Manic, Ana B., Branislav M. Notaros et Milan M. Ilic. « Symmetric coupling of finite element method and method of moments using higher order elements ». Dans 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6348569.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Finites elements method"

1

Jiang, W., et Benjamin W. Spencer. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements. Office of Scientific and Technical Information (OSTI), mars 2017. http://dx.doi.org/10.2172/1409274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Babuska, I., et H. C. Elman. Performance of the h-p Version of the Finite Element Method with Various Elements. Fort Belvoir, VA : Defense Technical Information Center, septembre 1991. http://dx.doi.org/10.21236/ada250689.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Costa, Timothy, Stephen D. Bond, David John Littlewood et Stan Gerald Moore. Peridynamic Multiscale Finite Element Methods. Office of Scientific and Technical Information (OSTI), décembre 2015. http://dx.doi.org/10.2172/1227915.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dohrmann, C. R., M. W. Heinstein, J. Jung et S. W. Key. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes. Office of Scientific and Technical Information (OSTI), janvier 1999. http://dx.doi.org/10.2172/2637.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Babuska, Ivo, Uday Banerjee et John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA : Defense Technical Information Center, janvier 2005. http://dx.doi.org/10.21236/ada440610.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Coyle, J. M., et J. E. Flaherty. Adaptive Finite Element Method II : Error Estimation. Fort Belvoir, VA : Defense Technical Information Center, septembre 1994. http://dx.doi.org/10.21236/ada288358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Babuska, I., et J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA : Defense Technical Information Center, juin 1995. http://dx.doi.org/10.21236/ada301760.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zheng, Jinhui, Matteo Ciantia et Jonathan Knappett. On the efficiency of coupled discrete-continuum modelling analyses of cemented materials. University of Dundee, décembre 2021. http://dx.doi.org/10.20933/100001236.

Texte intégral
Résumé :
Computational load of discrete element modelling (DEM) simulations is known to increase with the number of particles. To improve the computational efficiency hybrid methods using continuous elements in the far-field, have been developed to decrease the number of discrete particles required for the model. In the present work, the performance of using such coupling methods is investigated. In particular, the coupled wall method, known as the “wall-zone” method when coupling DEM and the continuum Finite Differences Method (FDM) using the Itasca commercial codes PFC and FLAC respectively, is here analysed. To determine the accuracy and the efficiency of such a coupling approach, 3-point bending tests of cemented materials are simulated numerically. To validate the coupling accuracy first the elastic response of the beam is considered. The advantage of employing such a coupling method is then investigated by loading the beam until failure. Finally, comparing the results between DEM, DEM-FDM coupled and FDM models, the advantages and disadvantages of each method are outlined.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Duarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA : Defense Technical Information Center, mai 2012. http://dx.doi.org/10.21236/ada577139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Manzini, Gianmarco, et Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), décembre 2017. http://dx.doi.org/10.2172/1415356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie