Articles de revues sur le sujet « Filtre Gm-C »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Filtre Gm-C.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Filtre Gm-C ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kiela, Karolis, et Romualdas Navickas. « AUTOMATED INTEGRATED ANALOG FILTER DESIGN ISSUES / AUTOMATIZUOTOJO INTEGRINIŲ ANALOGINIŲ FILTRŲ PROJEKTAVIMO YPATUMAI ». Mokslas – Lietuvos ateitis 7, no 3 (13 juillet 2015) : 323–29. http://dx.doi.org/10.3846/mla.2015.793.

Texte intégral
Résumé :
An analysis of modern automated integrated analog circuits design methods and their use in integrated filter design is done. Current modern analog circuits automated tools are based on optimization algorithms and/or new circuit generation methods. Most automated integrated filter design methods are only suited to gmC and switched current filter topologies. Here, an algorithm for an active RC integrated filter design is proposed, that can be used in automated filter designs. The algorithm is tested by designing an integrated active RC filter in a 65 nm CMOS technology. Atlikta naujausių integrinių analoginių grandynų automatizuotojo projektavimo metodų ir jų taikymo projektuojant integrinius filtrus analizė. Modernios analoginių grandynų automatizavimo priemonės yra grindžiamos esamos topologijos optimizacijos algoritmais ir/arba naujų elektroninių principinių schemų generavimo būdais. Didžioji dauguma literatūroje aprašytų automatizuotojo integrinių filtrų projektavimo metodų yra skirti tik gm-C arba perjungiamos srovės/talpos topologijos filtrams. Darbe siūlomas naujas integrinių aktyviųjų RC filtrų projektavimo algoritmas, įvertinantis integrinių technologijų elementų nuokrypius. Jis patikrintas suprojektavus integrinį aktyvųjį RC filtrą taikant 65 nm KMOP technologiją ir Cadence programinį paketą.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bhanja, Mousumi, et Baidyanath Ray. « Design of Configurable gm−C Biquadratic Filter ». Journal of Circuits, Systems and Computers 26, no 03 (21 novembre 2016) : 1750036. http://dx.doi.org/10.1142/s0218126617500360.

Texte intégral
Résumé :
Design methodology of a voltage-mode programmable biquadratic filter using minimum components is proposed in this paper. Multifunction second-order filter has been implemented using two first-order filter sections. The proposed biquadratic filter has been realized with operational transconductance amplifier (OTA). Cut-off frequency and [Formula: see text]-factor of the biquadratic are controlled by the transconductance of the OTAs. The proposed design technique keeps all the sensitivities to lower values. The biquadratic filter operates at high frequency. The proposed structure is transformed into a third-order multifunction filter by adding minimum component, a single capacitor. Design of higher order filter using the proposed second-order function also has been investigated. The proposed synthesis is validated with SPICE simulation in 0.13[Formula: see text][Formula: see text]m technology. Total harmonic distortion, output noise, corner simulations, Monte Carlo analysis due to the circuit parameter and process parameter variation have been studied.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Choi, Moon-Ho, et Yeong-Seuk Kim. « A Gm-C Filter using CMFF CMOS Inverter-type OTA ». Journal of the Korean Institute of Electrical and Electronic Material Engineers 23, no 4 (1 avril 2010) : 267–72. http://dx.doi.org/10.4313/jkem.2010.23.4.267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lin, Haijun, Tomoyuki Tanabe, Hao San et Haruo Kobayashi. « Analysis and Design of Inverter-Type Gm-C Bandpass Filter ». IEEJ Transactions on Electronics, Information and Systems 129, no 8 (2009) : 1483–89. http://dx.doi.org/10.1541/ieejeiss.129.1483.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hu, Hui Yong, Liu Sun, He Ming Zhang et Jian Jun Song. « A Low-Power High Linearity Gm-C Filter ». Applied Mechanics and Materials 109 (octobre 2011) : 266–70. http://dx.doi.org/10.4028/www.scientific.net/amm.109.266.

Texte intégral
Résumé :
A low-power, high linearity Gm-C filter is presented and designed.The input transistors of Gm is biased in linear region, and drain-source voltage is constant through feedback loop. The filter is designed in SMIC 0.18μm Mixed Signal CMOS PDK (Process Design Kit) with cutoff frequency 15.74 MHz, Passband ripple less than 0.2dB,while dissipating 2.5mW. It can be used as Baseband filter in RF system.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Karami, Poorya, et Seyed Mojtaba Atarodi. « A configurable high frequency Gm-C filter using a novel linearized Gm ». AEU - International Journal of Electronics and Communications 109 (septembre 2019) : 55–66. http://dx.doi.org/10.1016/j.aeue.2019.06.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Moreno, Ricardo F. L., Fernando A. P. Barúqui et Antonio Petraglia. « Bulk-tuned Gm – C filter using current cancellation ». Microelectronics Journal 46, no 8 (août 2015) : 777–82. http://dx.doi.org/10.1016/j.mejo.2015.05.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Koziel, S., S. Szczepanski et E. Sanchez-Sinencio. « NONLINEAR DISTORTION AND NOISE ANALYSIS OF GENERAL GM-C FILTERS ». SYNCHROINFO JOURNAL 7, no 6 (2021) : 2–7. http://dx.doi.org/10.36724/2664-066x-2021-7-6-2-7.

Texte intégral
Résumé :
Systems such as Gm-C filters are ideally designed to exhibit linear characteristics. However, their components – especially transconductors – are intrinsically nonlinear. Although there exist many approaches that aim at reducing nonlinear effects while dealing with practical design problems, nonlinear distortion cannot be canceled out completely. Thus, it is important to estimate a degradation of filter performance caused by nonlinearities. In this paper we propose a simple and general method to perform a transient analysis of any Gm-C filter structure based on a matrix description and macro-modeling of transconductors. An analytical description of general Gm-C filters with nonlinear transconductors is introduced. A differential system that determines dynamics of a general structure of Gm-C filter is formulated. This allows us to carry out an effective and fast transient analysis of any Gm-C filter using standard numerical methods. The approach can be applied to investigate any non-linear effects in filters. The noise analysis of Gm-C filters in general setting is also presented. The accuracy of the proposed methods is confirmed by comparison with SPICE simulation. Example of application for performance optimization of 4th order Chebyshev filter is given.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Parvizi, Mostafa, Abouzar Taghizadeh, Hamid Mahmoodian et Ziaadin Daei Kozehkanani. « A Low-Power Mixed-Mode SIMO Universal Gm–C Filter ». Journal of Circuits, Systems and Computers 26, no 10 (24 mars 2017) : 1750164. http://dx.doi.org/10.1142/s021812661750164x.

Texte intégral
Résumé :
This paper describes a new single-input multiple-output (SIMO) mixed-mode universal biquad [Formula: see text]–[Formula: see text] filter. It can realize all kinds of filter responses including high-pass, band-pass, low-pass, band-stop and all-pass filters, simultaneously. Moreover, in this structure, all of these filters in all states of voltage mode, current mode, transresistance mode and transconductance mode are achieved by the same topology without any convertor. The proposed filter employs three operational transconductance amplifiers (OTAs) with four inputs and one output, three fully differential OTAs and two grounded capacitors. In other words, this filter is composed of six [Formula: see text] blocks and two grounded capacitors. The grounded capacitors are suitable for integrated circuit implementation. In order to reduce the power consumption, the OTAs are biased in subthreshold region. In addition, sensitivity analysis is included to show the low active and passive sensitivity performances of the filter. This filter is designed and simulated in HSPICE with 0.18[Formula: see text][Formula: see text]m model CMOS technology parameters. The simulation results show that the filter consumes only 75[Formula: see text][Formula: see text]W and operates at 1.5[Formula: see text]MHz with [Formula: see text]0.5[Formula: see text]V supply voltages and capacitors [Formula: see text][Formula: see text]pF.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lv, Qiu Ye, Chong He, Wen Jie Fan, Yu Feng Zhang et Xiao Wei Liu. « The Design of Gm-C Low-Pass Filter for Micromachined Gyroscope ». Key Engineering Materials 609-610 (avril 2014) : 1072–76. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.1072.

Texte intégral
Résumé :
In this Paper, a 4th-Order Low-Pass Gm-C Filter is Presented. for the Design of Operational Tranconductance Amplifier(OTA), it Adopts the Techniques of Current Division and Current Cancellation. these Techniques can Help to Achieve a Low Transconductance Value. for the Architecture of the 4th-Order Gm-C Filter, it Consists of Two Biquads. the Two Biquads are Cascade Connected. the Gm-C Low-Pass Filter has been Implemented under 0.5 μm CMOS Process Model. the Final Simulation Results Show the Cutoff Frequency of the Filter is 100Hz and the Stop-Band Attenuation is Larger than 60dB. the Power Consumption is Lower than 1mW and the Total Harmonic Distortion(THD) is -55dB.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wu, Xu, Long He et Lianming Li. « A high-speed complementary current-mode Gm-C filter ». IEICE Electronics Express 19, no 7 (10 avril 2022) : 20220082. http://dx.doi.org/10.1587/elex.19.20220082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

LEE, J., K. HAYATLEH, F. J. LIDGEY et J. DREW. « LINEAR Bi-CMOS TRANSCONDUCTANCE FOR Gm-C FILTER APPLICATIONS ». Journal of Circuits, Systems and Computers 11, no 03 (juin 2002) : 219–30. http://dx.doi.org/10.1142/s0218126602000409.

Texte intégral
Résumé :
In this paper a novel transconductance Bi-CMOS stage is described. This stage makes combined use of a translinear current gain cell and a negative resistance cell, to generate a linear tuneable transconductor. The transconductance stage was designed specifically for an integrated Gm-C filter application, and is shown to perform well at high frequencies.
Styles APA, Harvard, Vancouver, ISO, etc.
13

CHOOGORN, TERDPUN, et JIRAYUTH MAHATTANAKUL. « IIP3 : CAUSAL RELATIONSHIP FROM TRANSCONDUCTOR TO LADDER Gm-C FILTER ». Journal of Circuits, Systems and Computers 22, no 09 (octobre 2013) : 1340004. http://dx.doi.org/10.1142/s0218126613400045.

Texte intégral
Résumé :
Causal relationship between the third-order input intercept point (IIP3) of transconductors and that of doubly-terminated ladder Gm-C filter employing these transconductors is explored and the formula relating both IIP3's is derived. The analytical results reveal that the IIP3 of the ladder Gm-C filter is about 1.2 dBV higher than the IIP3 of the transconductors and the validity of this finding is well confirmed by simulation results.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Basnet, Barun, Jun-Ho Bang, Je-ho Song et In-Ho Ryu. « Stopband Tunable Multifunctional Gm-C Filter based on OTA with Three-Input/Single-Output ». Journal of The Institute of Internet, Broadcasting and Communication 15, no 5 (31 octobre 2015) : 201–6. http://dx.doi.org/10.7236/jiibc.2015.15.5.201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chary, P. Purushothama, Rizwan Shaik Peerla et Ashudeb Dutta. « A Simplified Gm − C Filter Technique for Reference Spur Reduction in Phase-Locked Loop ». Journal of Low Power Electronics and Applications 14, no 1 (20 mars 2024) : 17. http://dx.doi.org/10.3390/jlpea14010017.

Texte intégral
Résumé :
This paper presents a wideband approach for L5 and S-band integer-N phase-locked loop (PLL) targeting Indian Regional Navigation Satellite System (IRNSS) applications. A reference spur reduction technique using a Gm−C filter is proposed. The reference spur is improved by 7 dB when compared with one without any Gm−C filter. The wideband integer-N PLL is designed and fabricated in UMC 65-nm CMOS process. The Gm−C filter block consumes 200 μA current. The wideband voltage-controlled oscillator (VCO) oscillates from 1.6 GHz to 3.2 GHz having a tuning range (TR) of 40%, achieving a best and worst phase noise of ≈−122 dBc/Hz and ≈−116 dBc/Hz at a 1 MHz offset, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
16

JOVANOVIC, G. S., D. B. MITIC, M. K. STOJCEV et D. S. ANTIC. « Phase-Synchronizer based on gm-C All-Pass Filter Chain ». Advances in Electrical and Computer Engineering 12, no 1 (2012) : 39–44. http://dx.doi.org/10.4316/aece.2012.01007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Byun, S., et J. Laskar. « Digitally tuned Gm-C filter with VDD∕temperature-compensating DAC ». Electronics Letters 43, no 5 (2007) : 280. http://dx.doi.org/10.1049/el:20070169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Acosta, L., M. Jimenez, R. G. Carvajal, A. J. Lopez-Martin et J. Ramirez-Angulo. « Highly Linear Tunable CMOS $Gm{\hbox{-}}C$Low-Pass Filter ». IEEE Transactions on Circuits and Systems I : Regular Papers 56, no 10 (octobre 2009) : 2145–58. http://dx.doi.org/10.1109/tcsi.2008.2012218.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lo, Tien-Yu, et Chung-Chih Hung. « A 250 MHz low voltage low-pass Gm-C filter ». Analog Integrated Circuits and Signal Processing 71, no 3 (11 juin 2011) : 465–72. http://dx.doi.org/10.1007/s10470-011-9666-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Fan, Xiang Ning, Kuan Bao, Rui Wu et Jun Bo Liu. « Gm-C Complex Band-Pass Filter with Tuning Circuit in 0.18μm CMOS ». Applied Mechanics and Materials 229-231 (novembre 2012) : 1605–8. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.1605.

Texte intégral
Résumé :
This paper presents a 0.18μm CMOS based Gm-C complex band-pass (CBP) filter with tuning circuit. Active-Gm-C structure with Nauta transconductor and phase-locked loop (PLL) architecture are adopted by the filter and the tuning circuit respectively which can achieve accurate frequency response. The layout size is 970μm×920μm. Under a 1.8V supply voltage, measurement results show that the pass-band gain and the ripple of the filter is 3.1dB and 3dB respectively. The bandwidth after tuning is 32.5MHz, image rejection ratio (IRR) is about 47dB, and the power dissipation of the filter is about 21.6mW.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ivanov, N. V., et A. S. Korotkov. « A highly linear 25 MHz bandwidth Gm-C SOI complex filter ». Journal of Physics : Conference Series 1236 (juin 2019) : 012084. http://dx.doi.org/10.1088/1742-6596/1236/1/012084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Mahattanakul, J., et C. Toumazou. « Modular log-domain filters based upon linear Gm-C filter synthesis ». IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications 46, no 12 (1999) : 1421–30. http://dx.doi.org/10.1109/81.809544.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wang, Yu, Jing Liu, Na Yan et Hao Min. « A low-noise widely tunable Gm-C filter with frequency calibration ». Journal of Semiconductors 37, no 9 (septembre 2016) : 095002. http://dx.doi.org/10.1088/1674-4926/37/9/095002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Comer, David J., Donald T. Comer, Bryan K. Casper et Darren S. Korth. « A low-frequency, continuous-time notch filter using Gm-C circuits ». International Journal of Electronics 86, no 11 (novembre 1999) : 1349–57. http://dx.doi.org/10.1080/002072199132635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Rao, G. Hanumantha, et S. Rekha. « Low Voltage, Low Power Gm-C Filter for Low Frequency Applications ». Journal of Low Power Electronics 14, no 2 (1 juin 2018) : 266–74. http://dx.doi.org/10.1166/jolpe.2018.1558.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Li, W., Y. Huang et Z. Hong. « 70–280 MHz 21 mW 53 dB SFDR Gm-C filter ». Electronics Letters 46, no 17 (2010) : 1187. http://dx.doi.org/10.1049/el.2010.8755.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lebel, Eric, Ali Assi et Mohamad Sawan. « Programmable monolithic Gm-C band-pass filter : design and experimental results ». Analog Integrated Circuits and Signal Processing 54, no 1 (11 décembre 2007) : 21–29. http://dx.doi.org/10.1007/s10470-007-9117-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

FATIN, Gh ZAREH, et Z. D. KOOZEH KANANI. « A VERY LOW POWER BANDPASS FILTER FOR LOW-IF APPLICATIONS ». Journal of Circuits, Systems and Computers 17, no 04 (août 2008) : 685–701. http://dx.doi.org/10.1142/s0218126608004496.

Texte intégral
Résumé :
This paper presents a second-order bandpass filter for IF frequencies in the range of 500 kHz–2 MHz. By using a single Gm–cell as a biquad filter, considerable saving in area and power is feasible. Higher order structures can be achieved by cascading this second-order block. This Gm-C filter achieves a dynamic range of 37 dB for 1% IM3 in Bluetooth while dissipating only 10.5 mW from 3.3 power supply in 0.35 μm CMOS process. The on-chip indirect automatic tuning circuit sets the filter center frequency to an external reference clock.
Styles APA, Harvard, Vancouver, ISO, etc.
29

HWANG, YUH-SHYAN, JIANN-JONG CHEN et JEN-HUNG LAI. « A FULLY DIFFERENTIAL THIRD-ORDER VHF Gm–C FILTER BASED ON LINEAR TRANSFORMATION TECHNIQUES ». Journal of Circuits, Systems and Computers 16, no 02 (avril 2007) : 221–31. http://dx.doi.org/10.1142/s0218126607003587.

Texte intégral
Résumé :
A fully differential third-order very high frequency (VHF) Gm–C filter based on linear transformation (LT) techniques is presented in this paper. The systematic design method and the procedure are developed to realize LT Gm–C filters efficiently. A third-order Butterworth lowpass filter embedded bandgap and bias circuits with 200 MHz cutoff frequency is implemented in the TSMC 0.18 μm 1P6M process. The total harmonic distortion (THD) of the proposed filter is - 43 dB with input signal 0.5 V p-p and output loading capacitance 1 pF at 200 MHz. Power dissipation is 9.77 mW under 1.8 V supply voltage. Its core area occupies 0.188 × 0.1862. Post simulation and experimental results that confirm the theoretical analysis are obtained. Furthermore, the proposed circuits can be extended to high-order Chebychev and elliptic filters.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jin, Guang Lei, Hao Chen, Chuan Gao, Yun Peng Zhang, Mu Rong Li, Haruo Kobayashi, Shu Wu, Nobukazu Takai, Kiichi Niitsu et Khayrollah Hadidi. « Digital Auto-Tuning for Center Frequency and Q-Factor of Gm-C Band-Pass Filter ». Key Engineering Materials 643 (mai 2015) : 123–30. http://dx.doi.org/10.4028/www.scientific.net/kem.643.123.

Texte intégral
Résumé :
This paper describes digital auto-tuning schemes for second-order Gm-C bandpass filters which are suitable for fine CMOS implementation. We propose a switched Gm-C analog filter and two digital tuning schemes: a center frequency tuning scheme using the phase information and a Q factor tuning scheme using the magnitude information. We present circuits, describe their operations, and present SPICE simulation results.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhao, Wenshan, Lina Ma, Yuzhen Zhang, Yigang He et Yichuang Sun. « Design of Gm-C wavelet filter for on-line epileptic EEG detection ». IEICE Electronics Express 16, no 23 (2019) : 20190560. http://dx.doi.org/10.1587/elex.16.20190560.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lo, Tien-Yu, Chih-Lung Kuo et Chung-Chih Hung. « Negative current feedback OTA with application to 250 MHz Gm-C filter ». Analog Integrated Circuits and Signal Processing 73, no 1 (6 juin 2012) : 123–29. http://dx.doi.org/10.1007/s10470-012-9871-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Henrici, F., J. Becker et Y. Manoli. « Simulation eines rekonfigurierbaren G<sub><i>m</i></sub>-C filter arrays ». Advances in Radio Science 5 (13 juin 2007) : 341–45. http://dx.doi.org/10.5194/ars-5-341-2007.

Texte intégral
Résumé :
Abstract. Es wird ein Gm-C Filter für den Einsatz in rekonfigurierbaren Analogfiltern (FPAAs) präsentiert. Das Filter ist auf den Einsatz in FPAAs mit hexagonalem Grid und auf den Verzicht auf Transmissiongates optimiert. Trotzdem können nicht nur die Parameter der instanziierten Filter geändert werden, sondern auch ihre Struktur. Beim Design des digital programmierbaren Transkonduktors musste auf die hohe Anzahl parallel geschalteter, gleichartiger Transkonduktoren und ihre parasitären Kapazitäten Rücksicht genommen werden. Ein FPAA mit 49 Gm-Zellen erreicht in Simulationen in einem 130 nm 1.2 V CMOS Prozess eine maximale Bandbreite von 164 MHz. Die Verzerrung beträgt weniger als –70 dB bei einem 50m V @1 MHz Signal.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhou, Mingjie, Jianhui Wu, Chao Chen et Zhikang Cai. « A tunable Gm-C polyphase filter with high linearity and automatic frequency calibration ». IEICE Electronics Express 11, no 18 (2014) : 20140794. http://dx.doi.org/10.1587/elex.11.20140794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Garcia-Alberdi, Coro, Antonio J. Lopez-Martin, Lucia Acosta, Ramon G. Carvajal et Jaime Ramirez-Angulo. « Tunable Class AB CMOS Gm-C Filter Based on Quasi-Floating Gate Techniques ». IEEE Transactions on Circuits and Systems I : Regular Papers 60, no 5 (mai 2013) : 1300–1309. http://dx.doi.org/10.1109/tcsi.2012.2220504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Rangel, R. S., P. G. D. Agopian et J. A. Martino. « Experimental silicon tunnel-FET device model applied to design a Gm-C filter ». Semiconductor Science and Technology 35, no 9 (11 août 2020) : 095029. http://dx.doi.org/10.1088/1361-6641/ab9ea8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zanjani, S. Mohammad Ali, Massoud Dousti et Mehdi Dolatshahi. « A new low-power, universal, multi-mode Gm-C filter in CNTFET technology ». Microelectronics Journal 90 (août 2019) : 342–52. http://dx.doi.org/10.1016/j.mejo.2019.01.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Bang, Junho, Jeho Song, Inho Ryu et Sunghaen Jo. « A CMOS 5th Elliptic Gm-C Filter Using a New Fully Differential Transconductor ». International Journal of Control and Automation 6, no 6 (31 décembre 2013) : 115–26. http://dx.doi.org/10.14257/ijca.2013.6.6.12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Rezaei, Farzan. « Adaptive cancellation linearisation and its application to wide‐tunable Gm‐C filter design ». IET Circuits, Devices & ; Systems 11, no 5 (24 juillet 2017) : 478–86. http://dx.doi.org/10.1049/iet-cds.2016.0474.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lo, Chi-Hsiang. « A Gm-C continuous-time anti-alias filter for UWB analog front-end ». Analog Integrated Circuits and Signal Processing 75, no 1 (26 janvier 2013) : 171–77. http://dx.doi.org/10.1007/s10470-013-0031-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

JOVANOVIĆ, GORAN, DARKO MITIĆ, MILE STOJČEV et DRAGAN ANTIĆ. « SELF-TUNING BIQUAD BAND-PASS FILTER ». Journal of Circuits, Systems and Computers 22, no 03 (mars 2013) : 1350008. http://dx.doi.org/10.1142/s0218126613500084.

Texte intégral
Résumé :
One approach to design self-tuning gm-C biquad band-pass filter is considered in this paper. The phase control loop is introduced to force filter central frequency to be equal to input signal frequency what is achieved by adjusting the amplifier transconductance gm. Thanks to that, the filter is robust to parameter perturbations and it can be used as a selective amplifier. In the full tuning range, it has a constant maximum gain at central frequency as well as a constant bandwidth. The 0.25 μm SiGe BiCMOS technology was used during design and verification of the band-pass filter. The filter has 26 dB gain, quality factor Q = 20 and central frequency up to 150 MHz. Simulation results indicate that the total in-band noise is 59 μV rms , the output third intercept point OIP3 = 4.36 dB and the dynamic range is 35 dB. Maximal power consumption at 3 V power supply is 1.115 mW.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Corbacho, Israel, Juan M. Carrillo, José L. Ausín, Miguel Á. Domínguez, Raquel Pérez-Aloe et J. Francisco Duque-Carrillo. « CMOS Widely Tunable Second-Order Gm-C Bandpass Filter for Multi-Sine Bioimpedance Analysis ». Electronics 12, no 6 (10 mars 2023) : 1326. http://dx.doi.org/10.3390/electronics12061326.

Texte intégral
Résumé :
A CMOS widely tunable second-order Gm-C bandpass filter (BPF), intended to be used in multi-sine bioimpedance applications, is presented. The filter incorporates a tunable transconductor in which the responses of two linearized voltage-to-current converters are subtracted. As a result, the effective transconductance can be continuously adjusted over nearly three decades, which allows a corresponding programmability of the center frequency of the BPF. The circuit was designed and fabricated in 180 nm CMOS technology to operate with a 1.8 V supply, and the experimental characterization was carried out over eight samples of the silicon prototype. The simulated transconductance of the cell can be tuned from 5.3 nA/V up to 19.60 μA/V. The measured range of the experimental transconductance varied, however, between 1.42 μA/V and 20.57 μA/V. Similarly, the center frequency of the BPF, which in the simulations ranged from 500 Hz to 342 kHz, can be programmed in the silicon prototypes from 22.4 kHz to 290 kHz. Monte Carlo and corner simulations were carried out to ascertain the origin of this deviation. Besides, the extensive simulation and experimental characterization of the standalone transconductor and the complete BPF are provided.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Han, Jingyu, Yu Jiang, Guiliang Guo et Xu Cheng. « A Reconfigurable Analog Baseband Circuitry for LFMCW RADAR Receivers in 130-nm SiGe BiCMOS Process ». Electronics 9, no 5 (18 mai 2020) : 831. http://dx.doi.org/10.3390/electronics9050831.

Texte intégral
Résumé :
A highly reconfigurable open-loop analog baseband circuitry with programmable gain, bandwidth and filter order are proposed for integrated linear frequency modulated continuous wave (LFMCW) radar receivers in this paper. This analog baseband chain allocates noise, gain and channel selection specifications to different stages, for the sake of noise and linearity tradeoffs, by introducing a multi-stage open-loop cascaded amplifier/filter topology. The topology includes a course gain tuning pre-amplifier, a folded Gilbert variable gain amplifier (VGA) with a symmetrical dB-linear voltage generator and a 10-bit R-2R DAC for fine gain tuning, a level shifter, a programmable Gm-C low pass filter, a DC offset cancellation circuit, two fixed gain amplifiers with bandwidth extension and a novel buffer amplifier with active peaking for testing purposes. The noise figure is reduced with the help of a low noise pre-amplifier stage, while the linearity is enhanced with a power-efficient buffer and a novel high linearity Gm-C filter. Specifically, the Gm-C filter improves its linearity specification with no increase in power consumption, thanks to an alteration of the trans-conductor/capacitor connection style, instead of pursuing high linearity but power-hungry class-AB trans-conductors. In addition, the logarithmic bandwidth tuning technique is adopted for capacitor array size minimization. The linear-in-dB and DAC gain control topology facilitates the analog baseband gain tuning accuracy and stability, which also provides an efficient access to digital baseband automatic gain control. The analog baseband chip is fabricated using 130-nm SiGe BiCMOS technology. With a power consumption of 5.9~8.8 mW, the implemented circuit achieves a tunable gain range of −30~27 dB (DAC linear gain step guaranteed), a programmable −3 dB bandwidth of 18/19/20/21/22/23/24/25 MHz, a filter order of 3/6 and a gain resolution of better than 0.07 dB.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Shaker, Mohamed Omran, Soliman A. Mahmoud et Ahmed M. Soliman. « New CMOS Fully Differential Transconductor and Application to a Fully Differential Gm-C Filter ». ETRI Journal 28, no 2 (10 avril 2006) : 175–81. http://dx.doi.org/10.4218/etrij.06.0105.0173.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

OTIN, A. « A 0.18 m CMOS 3rd-Order Digitally Programmable Gm-C Filter for VHF Applications ». IEICE Transactions on Information and Systems E88-D, no 7 (1 juillet 2005) : 1509–10. http://dx.doi.org/10.1093/ietisy/e88-d.7.1509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Jo, Jun-Gi, et Changsik Yoo. « Low-voltage and high-frequency Gm-opamp-C filter with automatic self frequency tuning ». Analog Integrated Circuits and Signal Processing 50, no 3 (25 janvier 2007) : 285–90. http://dx.doi.org/10.1007/s10470-007-9025-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Huang, Jhin-Fang, et Chien-Ming Hsu. « 5.6-GHz fractional-N frequency synthesizer chip design with tunable Gm-C loop filter ». Microwave and Optical Technology Letters 55, no 11 (26 août 2013) : 2536–41. http://dx.doi.org/10.1002/mop.27908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Gao, Ting, Wei Li, Yunfeng Chen, Ning Li et Junyan Ren. « A 5.5mW 80-400MHz Gm-C low pass filter with a unique auto-tuning system ». IEICE Electronics Express 8, no 13 (2011) : 1034–39. http://dx.doi.org/10.1587/elex.8.1034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hwang, Y. S., J. J. Chen, J. H. Lai et P. W. Sheu. « Fully differential current-mode third-order Butterworth VHF Gm-C filter in 0.18 μm CMOS ». IEE Proceedings - Circuits, Devices and Systems 153, no 6 (2006) : 552. http://dx.doi.org/10.1049/ip-cds:20060028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Silin, Liu, Ma Heping et Shi Yin. « A low power Gm–C filter with on-chip automatic tuning for a WLAN transceiver ». Journal of Semiconductors 31, no 6 (juin 2010) : 065008. http://dx.doi.org/10.1088/1674-4926/31/6/065008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie