Articles de revues sur le sujet « Field spectrometry »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Field spectrometry.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Field spectrometry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Dorozhkin, I. P., Yu V. Baklanova et Ye V. Mustafina. « DEVELOPMENT OF FIELD SPECTROMETRY DATABASE ». NNC RK Bulletin, no 2 (17 octobre 2021) : 19–24. http://dx.doi.org/10.52676/1729-7885-2021-2-19-24.

Texte intégral
Résumé :
The paper considers the issues in design and development of databases for storage and processing gamma-spectrometric information. A model is presented that allows one to describe the conceptual schemes for storing and processing data obtained during field gamma-spectrometric surveys in principle and, in particular, on the territory of the Semipalatinsk test site. The possibilities of the database of field spectrometry are described. The interface for interaction between the user and the database management system has been implemented.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pollard, Matthew J., Christopher K. Hilton, Hongli Li, Kimberly Kaplan, Richard A. Yost et Herbert H. Hill. « Ion mobility spectrometer—field asymmetric ion mobility spectrometer-mass spectrometry ». International Journal for Ion Mobility Spectrometry 14, no 1 (9 mars 2011) : 15–22. http://dx.doi.org/10.1007/s12127-011-0058-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

DEUTSCH, JOSEPH, CHAIM GILON et MICHAEL CHOREV. « FIELD DESORPTION MASS SPECTROMETRY ». International Journal of Peptide and Protein Research 18, no 2 (12 janvier 2009) : 203–7. http://dx.doi.org/10.1111/j.1399-3011.1981.tb02058.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Renault, Mikael, Yassine Hadjar, Sylvain Blaize, Aurélien Bruyant, Laurent Arnaud, Gilles Lerondel et Pascal Royer. « Bidimensional near-field sampling spectrometry ». Optics Letters 35, no 19 (30 septembre 2010) : 3303. http://dx.doi.org/10.1364/ol.35.003303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Grimm, Ronald L., et J. L. Beauchamp. « Field-Induced Droplet Ionization Mass Spectrometry ». Journal of Physical Chemistry B 107, no 51 (décembre 2003) : 14161–63. http://dx.doi.org/10.1021/jp037099r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hawkes, N. P., K. A. A. Gamage et G. C. Taylor. « Digital approaches to field neutron spectrometry ». Radiation Measurements 45, no 10 (décembre 2010) : 1305–8. http://dx.doi.org/10.1016/j.radmeas.2010.06.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Leisch, M. « Three-dimensional field ion mass spectrometry ». Fresenius' Journal of Analytical Chemistry 349, no 1-3 (1994) : 102–6. http://dx.doi.org/10.1007/bf00323231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

van der Greef, J. « Field desorption mass spectrometry in bioanalysis ». TrAC Trends in Analytical Chemistry 5, no 9 (janvier 1986) : 241–46. http://dx.doi.org/10.1016/0165-9936(86)85062-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Behrens, Rolf, Hayo Zutz et Julian Busse. « Spectrometry of pulsed photon radiation ». Journal of Radiological Protection 42, no 1 (17 janvier 2022) : 011507. http://dx.doi.org/10.1088/1361-6498/ac3dd0.

Texte intégral
Résumé :
Abstract The energy distribution (spectrum) of pulsed photon radiation can hardly be measured using active devices, therefore, a thermoluminescence detector (TLD)-based few-channel spectrometer is used in combination with a Bayesian data analysis to help resolve this problem. The spectrometer consists of 30 TLD layers interspaced by absorbers made of plastics and metals with increasing atomic numbers and thickness. Thus, the main idea behind the device is the deeper the radiation penetrates—the higher the radiation’s energy when the radiation impinges perpendicular to the front of the spectrometer. From the doses measured in the TLD layers and from further prior available information, the photon spectrum is deduced using a Bayesian data analysis leading to absolute spectra and doses including their uncertainties and coverage intervals. This spectrometer was successfully used in two different scenarios, i.e. for the spectrometry of the radiation field two different industrial type open beam pulsed x-ray generators and secondly in three different radiation fields of a medical accelerator.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Purves, Randy W., et Roger Guevremont. « Electrospray Ionization High-Field Asymmetric Waveform Ion Mobility Spectrometry−Mass Spectrometry ». Analytical Chemistry 71, no 13 (juillet 1999) : 2346–57. http://dx.doi.org/10.1021/ac981380y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Davis, Stephen C., Gregory M. Neumann et Peter J. Derrick. « Field desorption mass spectrometry with suppression of the high field ». Analytical Chemistry 59, no 9 (mai 1987) : 1360–62. http://dx.doi.org/10.1021/ac00136a021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Heleg-Shabtai, Vered, Amalia Zaltsman, Mali Sharon, Hagai Sharabi, Ido Nir, Dana Marder, Guy Cohen, Izhar Ron et Alexander Pevzner. « Explosive vapour/particles detection using SERS substrates and a hand-held Raman detector ». RSC Advances 11, no 42 (2021) : 26029–36. http://dx.doi.org/10.1039/d1ra04637c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Swearingen, Kristian E., et Robert L. Moritz. « High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics ». Expert Review of Proteomics 9, no 5 (octobre 2012) : 505–17. http://dx.doi.org/10.1586/epr.12.50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Blazso, Marianne, Emma Jakab, Tamas Szekely, Bernd Plage et Hans-rolf Schulten. « Pyrolysis–gas chromatography mass spectrometry and field ionization mass spectrometry of polyquinones ». Journal of Polymer Science Part A : Polymer Chemistry 27, no 3 (février 1989) : 1027–43. http://dx.doi.org/10.1002/pola.1989.080270325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kudo, K., N. Takeda, S. Koshikawa, H. Toyokawa, H. Ohgaki et M. Matzke. « Photon spectrometry in thermal neutron standard field ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 476, no 1-2 (janvier 2002) : 213–17. http://dx.doi.org/10.1016/s0168-9002(01)01434-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hayashi, H., H. Iwai et F. Okuyama. « FIELD IONIZATION MASS SPECTROMETRY OF ORGANIC PLASMAS ». Le Journal de Physique Colloques 48, no C6 (novembre 1987) : C6–247—C6–251. http://dx.doi.org/10.1051/jphyscol:1987640.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Chen, Xingshuo, et R. Graham Cooks. « Accelerated reactions in field desorption mass spectrometry ». Journal of Mass Spectrometry 53, no 10 (16 août 2018) : 942–46. http://dx.doi.org/10.1002/jms.4254.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Lattimer, Robert P. « Pyrolysis field ionization mass spectrometry of polyolefins ». Journal of Analytical and Applied Pyrolysis 31 (février 1995) : 203–25. http://dx.doi.org/10.1016/0165-2370(94)00824-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lattimer, Robert P., et Harts-Rolf Schulten. « FIELD IONIZATION AND FIELD DESORPTION MASS SPECTROMETRY : PAST, PRESENT, AND FUTURE ». Analytical Chemistry 61, no 21 (novembre 1989) : 1201A—1215A. http://dx.doi.org/10.1021/ac00196a721.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sparkman, O. David. « The 12th Sanibel Conference on Mass Spectrometry : Field-Portable and Miniature Mass Spectrometry ». Journal of the American Society for Mass Spectrometry 11, no 5 (mai 2000) : 468–71. http://dx.doi.org/10.1016/s1044-0305(00)00118-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

GUEVREMONT, R. « High-field asymmetric waveform ion mobility spectrometry : A new tool for mass spectrometry ». Journal of Chromatography A 1058, no 1-2 (26 novembre 2004) : 3–19. http://dx.doi.org/10.1016/s0021-9673(04)01478-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kolakowski, Beata M., Margaret A. McCooeye et Zoltan Mester. « Compensation voltage shifting in high-field asymmetric waveform ion mobility spectrometry-mass spectrometry ». Rapid Communications in Mass Spectrometry 20, no 22 (2006) : 3319–29. http://dx.doi.org/10.1002/rcm.2739.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Manard, Manuel J., Rusty Trainham, Stephan Weeks, Stephen L. Coy, Evgeny V. Krylov et Erkinjon G. Nazarov. « Differential mobility spectrometry/mass spectrometry : The design of a new mass spectrometer for real-time chemical analysis in the field ». International Journal of Mass Spectrometry 295, no 3 (août 2010) : 138–44. http://dx.doi.org/10.1016/j.ijms.2010.03.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Povinec, P., M. Betti, A. Jull et P. Vojtyla. « New isotope technologies in environmental physics ». Acta Physica Slovaca. Reviews and Tutorials 58, no 1 (1 février 2008) : 1–154. http://dx.doi.org/10.2478/v10155-010-0088-6.

Texte intégral
Résumé :
New isotope technologies in environmental physicsAs the levels of radionuclides observed at present in the environment are very low, high sensitive analytical systems are required for carrying out environmental investigations. We review recent progress which has been done in low-level counting techniques in both radiometrics and mass spectrometry sectors, with emphasis on underground laboratories, Monte Carlo (GEANT) simulation of background of HPGe detectors operating in various configurations, secondary ionisation mass spectrometry, and accelerator mass spectrometry. Applications of radiometrics and mass spectrometry techniques in radioecology and climate change studies are presented and discussed as well. The review should help readers in better orientation on recent developments in the field of low-level counting and spectrometry, and to advice on construction principles of underground laboratories, as well as on criteria how to choose low or high energy mass spectrometers for environmental investigations.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Titarenko, Olga. « Hydrocarbon deposit mapping validation by the means of ground-based spectrometry, remote sensing and geophysical data ». Ukrainian journal of remote sensing, no 21 (15 juillet 2019) : 23–28. http://dx.doi.org/10.36023/ujrs.2019.21.151.

Texte intégral
Résumé :
The probability estimation of oil and gas inside certain area is essential for decision making on the industrial exploitation of oil and gas bearing features. A quantitative assessment of the hydrocarbon contour mapping accuracy using ground-based spectrometric measurements, remote, geological and geophysical data requires a special validation procedure. Its purpose is to evaluate achieved accuracy and reliability as well as the conformance to specified requirements. The input data for validation of the hydrocarbon deposit contour by field spectrometry are the one points’ locations relative to the other contours detected by independent methods, such as remote, geological and geophysical. As the field spectrometry performed along spatial trace, the geometric drifts of other methods’ cross-points are estimated. The algorithm for the validation of hydrocarbon deposit contour mapping by field spectrometry, remote, geological and geophysical data is proposed in this paper. The algorithm was tested on over the Novotroitsky and East Rogintsy hydrocarbon deposits (Ukraine). Measurements along 14 spatial traces over the Novotroitsky’s deposit and 28 traces over the East Rogintsy’s one was carried out to perform validation. The average error probability was 0.28, which demonstrates an admissible reliability of hydrocarbon deposits contours’ mapping by field spectrometry data. The preliminary validation estimates engagement during the hydrocarbon deposits mapping provides the fact-based statistical consistency of the quantitative measurements received. In addition, it is possible to filter the outliers reasonable before final information product release, which will enhance the overall reliability.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Gunzer, Frank. « Evaluation of calculated negative mode ion mobilities of small molecules in air ». European Journal of Mass Spectrometry 23, no 6 (31 août 2017) : 369–75. http://dx.doi.org/10.1177/1469066717729299.

Texte intégral
Résumé :
Ion mobility spectrometry is a well-known technique employed for the detection and analysis of gaseous substances. In pharmaceutical applications, it is furthermore used for structural analysis of compounds, especially in combination with mass spectrometry. In this field, the comparison of calculated collision cross sections and ion mobilities of theoretic model compounds with experimental values measured with ion mobility spectrometers helps to determine the compound’s structure. For positive mode ion mobility spectrometry, the calculated mobilities using the Trajectory Method show in general a deviation of 10% or less from experimental values. In this article, it was analyzed how well the calculated values reproduce the experimental values obtained with negative mode ion mobility spectrometry including symmetric and asymmetric analyte clusters. Furthermore, the influence of four different partial charge models on the results was investigated.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Schulten, Hans-Rolf, Bernd Plage et Robert P. Lattimer. « Pyrolysis-Field Ionization Mass Spectrometry of Rubber Vulcanizates ». Rubber Chemistry and Technology 62, no 4 (1 septembre 1989) : 698–708. http://dx.doi.org/10.5254/1.3536269.

Texte intégral
Résumé :
Abstract Time-/temperature-resolved Py-FIMS allows for the identification of rubber components in compounds containing normal organic additives. Signals due to polymer pyrolyzates, which may be masked by processing oil in nontemperature resolved spectra, are easily obtained. Py-FI spectra from cured BR and NR differ from the corresponding uncured samples in that signals from sulfur-containing oligomers are observed. For SBR, the signals from sulfur-containing pyrolyzates were not distinguishable in the complex mixture of hydrocarbon fragments that was produced. Therefore, unambiguous distinction between cured and uncured SBR was difficult. Since Py-FI mass spectra for rubber blends appear similar to the sum of the corresponding single component spectra, secondary reactions of chain fragments from the two blend components are minimal. These results are consistent with Curie-point Py-MS studies which also showed little interaction between components in blends. Since the Py-FI mass spectrum of the styrene-butadiene block copolymer is similar to the sum of single component spectra, it is obvious that styrene-butadiene sequences are not very abundant. In contrast, mixed oligomers containing both styrene and butadiene units are found for SBR copolymers. The absence of styrene dimer and trimer, as well as high-mass oligomers of butadiene, indicates that the amount of block styrene is very low. Furthermore, the large numbers of mixed oligomers indicates a random sequence distribution. In summary, Py-FIMS is a very effective technique for direct rubber compound analysis. The sample can be examined directly, without pretreatment, and both organic additives and the rubber components can be identified in the same experiment. With programmed heating of the rubber, one can obtain separate (time-/temperature-resolved) FI mass spectra for the organic additives and the rubber pyrolyzates. The results are interesting in that much higher mass oligomers can be observed by Py-FIMS than are detected by other methods of Py-MS. For example, while the low voltage Py-EIMS typically shows no higher oligomers than trimer or tetramer for diene rubbers, Py-FIMS shows sequences containing perhaps 15–20 monomer units. This improved performance is due mainly to (a) the close proximity of the pyrolysis chamber to the field emitter (which minimizes secondary reactions) and (b) the very soft ionization provided by the FI technique. In favorable cases, Py-FIMS can be used to study long sequences in homopolymers, copolymers, and blends. As we have noted, pendent groups (e.g., mercaptobenzothiazyl) and crosslinks may be detected among the pyrolysis products. While some rubbers (e.g., polyisoprene) thermally degrade to give high abundances of oligomers, others degrade in a more random fashion (e.g., SBR) to give very complex mixtures of pyrolyzates. Polystyrene is an interesting case in which thermal degradation by retropolymerization (unzipping) is so prevalent that the monomer is by far the dominant pyrolyzate, and long oligomeric sequences are precluded. Thus, while Py-FIMS can easily be used for qualitative identification of rubber components, more detailed information may or may not be discernible in analysis of a particular rubber sample.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jia, Kun, Bingfang Wu, Yichen Tian, Qiangzi Li et Xin Du. « Spectral Discrimination of Opium Poppy Using Field Spectrometry ». IEEE Transactions on Geoscience and Remote Sensing 49, no 9 (septembre 2011) : 3414–22. http://dx.doi.org/10.1109/tgrs.2011.2126582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Yang, Zhang, van der Meer et Kroonenberg. « Geochemistry and field spectrometry for detecting hydrocarbon microseepage ». Terra Nova 10, no 5 (septembre 1998) : 231–35. http://dx.doi.org/10.1046/j.1365-3121.1998.00196.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jardine, Daniel R., Susan Nekula, N. Than-Trong, Paul R. Haddad, Peter J. Derrick, Eva Grespos et James H. O'Donnell. « Field desorption mass spectrometry of poly(olefin sulfones) ». Macromolecules 19, no 6 (novembre 1986) : 1770–72. http://dx.doi.org/10.1021/ma00160a050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Plage, Bernd, et Hans Rolf Schulten. « Pyrolysis-field ionization mass spectrometry of epoxy resins ». Macromolecules 21, no 7 (juillet 1988) : 2018–27. http://dx.doi.org/10.1021/ma00185a023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Alevra, A. V., H. Klein, K. Knauf et J. Wittstock. « Neutron Field Spectrometry for Radiation Protection Dosimetry Purposes ». Radiation Protection Dosimetry 44, no 1-4 (1 novembre 1992) : 223–26. http://dx.doi.org/10.1093/oxfordjournals.rpd.a081436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Alevra, A. V., H. Klein, K. Knauf et J. Wittstock. « Neutron Field Spectrometry for Radiation Protection Dosimetry Purposes ». Radiation Protection Dosimetry 44, no 1-4 (1 novembre 1992) : 223–26. http://dx.doi.org/10.1093/rpd/44.1-4.223.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lattimer, Robert P. « Pyrolysis field ionization mass spectrometry of hydrocarbon polymers ». Journal of Analytical and Applied Pyrolysis 39, no 2 (février 1997) : 115–27. http://dx.doi.org/10.1016/s0165-2370(96)00966-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Aznar, J. C., H. Paucar-Munoz, M. Richer-Laflèche et Y. Bégin. « Field litter thickness assessed by gamma-ray spectrometry ». Forest Ecology and Management 260, no 10 (octobre 2010) : 1640–45. http://dx.doi.org/10.1016/j.foreco.2010.07.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zaia, Joseph. « Mass Spectrometry and the Emerging Field of Glycomics ». Chemistry & ; Biology 15, no 9 (septembre 2008) : 881–92. http://dx.doi.org/10.1016/j.chembiol.2008.07.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Baykut, Gökhan, et Jochen Franzen. « Mobile mass spectrometry ; a decade of field applications ». TrAC Trends in Analytical Chemistry 13, no 7 (août 1994) : 267–75. http://dx.doi.org/10.1016/0165-9936(94)87063-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Makas, Alexei L., et Mikhail L. Troshkov. « Field gas chromatography–mass spectrometry for fast analysis ». Journal of Chromatography B 800, no 1-2 (février 2004) : 55–61. http://dx.doi.org/10.1016/j.jchromb.2003.08.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Nyadong, Leonard, Jinfeng Lai, Carol Thompsen, Chris J. LaFrancois, Xinheng Cai, Chunxia Song, Jieming Wang et Wei Wang. « High-Field Orbitrap Mass Spectrometry and Tandem Mass Spectrometry for Molecular Characterization of Asphaltenes ». Energy & ; Fuels 32, no 1 (22 décembre 2017) : 294–305. http://dx.doi.org/10.1021/acs.energyfuels.7b03177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ivanov, Yu D., T. O. Pleshakova, K. A. Malsagova, A. L. Kaysheva, A. T. Kopylov, A. A. Izotov, V. Yu Tatur et al. « AFM fishing of proteins under impulse electric field ». Biomeditsinskaya Khimiya 62, no 4 (2016) : 439–46. http://dx.doi.org/10.18097/pbmc20166204439.

Texte intégral
Résumé :
A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Karabagias, Ioannis K. « Advances of Spectrometric Techniques in Food Analysis and Food Authentication Implemented with Chemometrics ». Foods 9, no 11 (27 octobre 2020) : 1550. http://dx.doi.org/10.3390/foods9111550.

Texte intégral
Résumé :
Given the continuous consumer demand for products of high quality and specific origin, there is a great tendency for the application of multiple instrumental techniques for the complete characterization of foodstuffs or related natural products. Spectrometric techniques usually offer a full and rapid screenshot of products’ composition and properties by the determination of specific bio-molecules such as sugars, minerals, polyphenols, volatile compounds, amino acids, organic acids, etc. The present special issue aimed firstly to enhance the advances of the application of spectrometric techniques such as gas chromatography coupled to mass spectrometry (GC-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), isotope ratio mass spectrometry (IRMS), nuclear magnetic resonance (NMR), Raman spectroscopy, or any other spectrometric technique, in the analysis of foodstuffs such as meat, milk, cheese, potatoes, vegetables, fruits/fruit juices, honey, olive oil, chocolate, and other natural products. An additional goal was to fill the gap between food composition/food properties/natural products properties and food/natural products authenticity, using supervised and non-supervised chemometrics. Of the 18 submitted articles, nine were eventually published, providing new information to the field.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chen, Chiing Chang, Yu Rou Jiang et Ken Hao Chang. « The Hydrothermal Synthesis of β-ZnMoO4 for UV or Visible-Light-Responsive Photocatalytic Dedradation of Victoria Blue R ». Advanced Materials Research 557-559 (juillet 2012) : 761–66. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.761.

Texte intégral
Résumé :
In this study, hydrothermal reaction with Na2MoO4 and Zn(NO3)2as a precursor were investigated for the synthesis of β-ZnMoO4. The β-ZnMoO4were characterized by the X-ray diffractometer (XRD), electron microscopy with the field emission scanning electron microscopy with energy dispersive X-ray spectrometer (FE-SEM-EDS), high resolution X-ray photoelectron spectrometry (HR-XPS), UV-vis diffuse reflectance spectrometry (UV-DRS), and Fourier transform infrared spectrometry (FT-IR). Diffuse UV-vis spectra show the β-ZnMoO4materials to be indirect semiconductors with an optical bandgap of 2.48-2.64 eV. The photocatalytic efficiencies of powder suspensions were evaluated by measuring the Victoria Blue R (VBR) concentration. This is the first reveal that excellent activities of β-ZnMoO4are a promising visible-light-responsive photocatalyst.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kosevich, Marina V., et Vadim S. Shelkovsky. « A new type of graphite emitter for field ionization/field desorption mass spectrometry ». Rapid Communications in Mass Spectrometry 7, no 9 (septembre 1993) : 805–11. http://dx.doi.org/10.1002/rcm.1290070905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lapolla, Annunziata, Simona Porcu et Pietro Traldi. « Mass Spectrometry for Diabetic Nephropathy Monitoring : New Effective Tools for Physicians ». ISRN Endocrinology 2012 (20 mai 2012) : 1–13. http://dx.doi.org/10.5402/2012/768159.

Texte intégral
Résumé :
The main aim of diabetic nephropathy monitoring is to identify molecular markers, that is, to find changes occurring at metabolome and proteome levels indicative of the disease’s development. The mass spectrometry methods available today have been successfully applied to this field. This paper provides a short description of the basic aspects of the mass spectrometric methods used for diabetic nephropathy monitoring, reporting and discussing the results obtained using different approaches.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Geladi, Paul, et Eigil Dåbakk. « An Overview of Chemometrics Applications in near Infrared Spectrometry ». Journal of Near Infrared Spectroscopy 3, no 3 (juin 1995) : 119–32. http://dx.doi.org/10.1255/jnirs.63.

Texte intégral
Résumé :
Near infrared (NIR) spectrometry has found wide use in academic applications, forensic research and in industry. While the use of NIR has been extended to new fields, there have also been enormous developments in the field of multivariate calibration. Some of these developments were due to demands in NIR applications while others came from related spectral techniques. In this paper some trends and developments in multivariate calibration and the use of NIR spectrometry are presented and commented upon. A complete overview would be quite impossible, but an attempt is made to present a good selection of what is going on in the field, with appropriate comments.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Shvartsburg, Alexandre A., Tadeusz Bryskiewicz, Randy W. Purves, Keqi Tang, Roger Guevremont et Richard D. Smith. « Field Asymmetric Waveform Ion Mobility Spectrometry Studies of Proteins : Dipole Alignment in Ion Mobility Spectrometry ? » Journal of Physical Chemistry B 110, no 43 (novembre 2006) : 21966–80. http://dx.doi.org/10.1021/jp062573p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Purves, Randy W., David A. Barnett et Roger Guevremont. « Separation of protein conformers using electrospray-high field asymmetric waveform ion mobility spectrometry-mass spectrometry ». International Journal of Mass Spectrometry 197, no 1-3 (février 2000) : 163–77. http://dx.doi.org/10.1016/s1387-3806(99)00240-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Meng, Fan, Zefang Liu, Pengfei Wu, Weiwei Feng et Jiangong Cui. « Design Study of Broadband and Ultrahigh-Resolution Imaging Spectrometer Using Snapshot Multimode Interference in Fiber Bundles ». Photonics 9, no 5 (11 mai 2022) : 334. http://dx.doi.org/10.3390/photonics9050334.

Texte intégral
Résumé :
Imaging spectrometry plays a significant role in various scientific realms. Although imaging spectrometers based on different schemes have been proposed, the pursuit of compact and high-performance devices is still ongoing. A compact broadband and ultrahigh-resolution imaging spectrometer (CBURIS) is presented, which comprises a microlens array, multiple fiber bundles, a microscope, and a two-dimensional detector array. The principle of the device is to spatially sample and integrate the field information via the front microlens array and then further process with the fiber bundles and imaging system based on the multimode interference theory. From both the theoretical and numerical analysis, this CBURIS design is a superior concept that not only achieves a 0.17° spatial resolution and ultrahigh spectral resolution (resolving power exceeds 2.58 × 106 at 1.55 µm) from the visible to mid-infrared region but also has the advantages of snapshot measurement, thermal stability, and a compact footprint compared with most existing imaging spectrometers.
Styles APA, Harvard, Vancouver, ISO, etc.
49

KUMOOKA, Yoshio. « Analysis of Tackifier Resin by Field Desorption Mass Spectrometry ». BUNSEKI KAGAKU 60, no 3 (2011) : 293–300. http://dx.doi.org/10.2116/bunsekikagaku.60.293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Cui, Qi, Jongchan Park, R. Theodore Smith et Liang Gao. « Snapshot hyperspectral light field imaging using image mapping spectrometry ». Optics Letters 45, no 3 (31 janvier 2020) : 772. http://dx.doi.org/10.1364/ol.382088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie