Articles de revues sur le sujet « Field-effect doping »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Field-effect doping.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Field-effect doping ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Noll, Stefan, Martin Rambach, Michael Grieb, Dick Scholten, Anton J. Bauer et Lothar Frey. « Effect of Shallow n-Doping on Field Effect Mobility in p-Doped Channels of 4H-SiC MOS Field Effect Transistors ». Materials Science Forum 778-780 (février 2014) : 702–5. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.702.

Texte intégral
Résumé :
A high inversion channel mobility is a key parameter of normally off Silicon-Carbide MOS field effect power transistors. The mobility is limited by scattering centers at the interface between the semiconductor and the gate-oxide. In this work we investigate the mobility of lateral normally-off MOSFETs with different p-doping concentrations in the channel. Additionally the effect of a shallow counter n-doping at the interface on the mobility was determined and, finally, the properties of interface traps with the charge pumping method were examined. A lower p-doping in the cannel reduces the threshold voltage and increases the mobility simultaneously. A shallow counter n-doping shows a similar effect, but differences in the behavior of the charge pumping current can be observed, indicating that the nitrogen has a significant effect on the electrical properties of the interface, too.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Huseynova, Gunel, et Vladislav Kostianovskii. « Doped organic field-effect transistors ». Material Science & ; Engineering International Journal 2, no 6 (5 décembre 2018) : 212–15. http://dx.doi.org/10.15406/mseij.2018.02.00059.

Texte intégral
Résumé :
Organic semiconductors and electronic devices based on these materials continue attracting great interest due to their excellent and unique optoelectronic properties as well as the advantageous possibilities of realizing flexible, light-weight, low-cost, and transparent optoelectronic devices fabricated on ultra-thin and solution-processible active layers. However, their poor electronic performance and unstable operation under ambient conditions limit their application in consumer electronics. This paper presents a brief introduction to doping of organic semiconductors and organic field-effect transistors. The description of the issues regarding charge carrier transport and other optoelectronic properties of organic semiconductors is also provided. The doping agents and methods commonly applied for organic semiconductors along with their fundamental mechanisms are introduced.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ryu, Min-Yeul, Ho-Kyun Jang, Kook Jin Lee, Mingxing Piao, Seung-Pil Ko, Minju Shin, Junghwan Huh et Gyu-Tae Kim. « Triethanolamine doped multilayer MoS2 field effect transistors ». Physical Chemistry Chemical Physics 19, no 20 (2017) : 13133–39. http://dx.doi.org/10.1039/c7cp00589j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

KUBOZONO, Yoshihiro, Yumiko KAJI, Keiko OGAWA, Yasuyuki SUGAWARA, Ritsuko EGUCHI, Koki AKAIKE, Takashi KAMBE et Akihiko FUJIWARA. « Field-effect Carrier Doping to Organic Molecular Crystals ». Hyomen Kagaku 32, no 1 (2011) : 27–32. http://dx.doi.org/10.1380/jsssj.32.27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Goswami, Yogesh, Pranav Asthana, Shibir Basak et Bahniman Ghosh. « Junctionless Tunnel Field Effect Transistor with Nonuniform Doping ». International Journal of Nanoscience 14, no 03 (19 mai 2015) : 1450025. http://dx.doi.org/10.1142/s0219581x14500252.

Texte intégral
Résumé :
In this paper, the dc performance of a double gate Junctionless Tunnel Field Effect Transistor (DG-JLTFET) has been further enhanced with the implementation of double sided nonuniform Gaussian doping in the channel. The device has been simulated for different channel materials such as Si and various III-V compounds like Gallium Arsenide, Aluminium Indium Arsenide and Aluminium Indium Antimonide. It is shown that Gaussian doped channel Junctionless Tunnel Field Effect Transistor purveys higher ION/IOFF ratio, lower threshold voltage and sub-threshold slope and also offers better short channel performance as compared to JLTFET with uniformly doped channel.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Riederer, Felix, Thomas Grap, Sergej Fischer, Marcel R. Mueller, Daichi Yamaoka, Bin Sun, Charu Gupta, Klaus T. Kallis et Joachim Knoch. « Alternatives for Doping in Nanoscale Field-Effect Transistors ». physica status solidi (a) 215, no 7 (30 janvier 2018) : 1700969. http://dx.doi.org/10.1002/pssa.201700969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Günther, Alrun A., Michael Sawatzki, Petr Formánek, Daniel Kasemann et Karl Leo. « Contact Doping for Vertical Organic Field‐Effect Transistors ». Advanced Functional Materials 26, no 5 (14 décembre 2015) : 768–75. http://dx.doi.org/10.1002/adfm.201504377.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Jingqi, Xiaofeng Chen, Gheorghe Iordache, Nini Wei et Husam N. Alshareef. « Characteristics of Vertical Carbon Nanotube Field-Effect Transistors on p-GaAs ». Nanoscience and Nanotechnology Letters 11, no 9 (1 septembre 2019) : 1239–46. http://dx.doi.org/10.1166/nnl.2019.2998.

Texte intégral
Résumé :
A semiclassical method is used to simulate the characteristics of vertical carbon nanotube fieldeffect transistors on p-GaAs. The calculation results show unique transfer characteristics that depend on the sign of the drain voltage. The transistors exhibit p-type characteristics and ambipolar characteristics for a positive drain voltage and a negative drain voltage, respectively. The p-type characteristics do not change with the GaAs bandgap and doping level, because the hole current from the single-walled carbon nanotube (SWCNT) and drain side dominates the whole current. In contrast, the ambipolar characteristics are greatly influenced by the GaAs bandgap and doping level. Only the electron current in the ambipolar characteristics increases as the GaAs bandgap decreases. Increasing the p-type doping of GaAs increases the p-branch current and decreases the electron current (n-branch) of the ambipolar characteristics. The effects of the SWCNT bandgap and doping level are different from those of GaAs, and the impact of SWCNT on the p-type characteristics is much greater than the impact on the ambipolar characteristics. The p-type current increases as the SWCNT bandgap decreases.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Luo, Xuyi, Kraig Andrews, Tianjiao Wang, Arthur Bowman, Zhixian Zhou et Ya-Qiong Xu. « Reversible photo-induced doping in WSe2 field effect transistors ». Nanoscale 11, no 15 (2019) : 7358–63. http://dx.doi.org/10.1039/c8nr09929d.

Texte intégral
Résumé :
We report a reversible photo-induced doping effect in two-dimensional (2D) tungsten diselenide (WSe2) field effect transistors on hexagonal boron nitride (h-BN) substrates under low-intensity visible light illumination (∼10 nW μm−2).
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wen, Xiao Wei, Chu De Feng, Li Dong Chen et Shi Ming Huang. « Effect of Different Doping on the Structure and Field-Stability of PMNT Ceramics ». Key Engineering Materials 336-338 (avril 2007) : 36–38. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.36.

Texte intégral
Résumé :
Effect of co-doping two different elements and incorporating SrBi2Nb2O9 (SBN) on structure and field-stability of dielectric properties in PMNT ceramics were investigated. Single-phase cubic Perovskite structure is more easily obtained by appropriate co- doping of La3+ and Zn2+. X-ray diffraction patterns of PMNT/SBN composite showed that there is no SBN grains in PMNT/SBN as a secondary phase. Co-doping of La3+ and Zn2+ as well as incorporation of SBN markedly increased the field-stability of dielectric constant. The mechanism of improving field-stability was tentatively discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Song, Yi, et Xiuling Li. « Scaling junctionless multigate field-effect transistors by step-doping ». Applied Physics Letters 105, no 22 (décembre 2014) : 223506. http://dx.doi.org/10.1063/1.4902864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kumar, M. Jagadesh, et Sindhu Janardhanan. « Doping-Less Tunnel Field Effect Transistor : Design and Investigation ». IEEE Transactions on Electron Devices 60, no 10 (octobre 2013) : 3285–90. http://dx.doi.org/10.1109/ted.2013.2276888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

So, Woo-young, J. Magnus Wikberg, David V. Lang, Oleg Mitrofanov, Christian L. Kloc, Theo Siegrist, Arthur M. Sergent et Arthur P. Ramirez. « Mobility-independent doping in crystalline rubrene field-effect transistors ». Solid State Communications 142, no 9 (juin 2007) : 483–86. http://dx.doi.org/10.1016/j.ssc.2007.03.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Patil, M. B., S. N. Mohammad et H. Morkoç. « Modeling of field-effect transistors with laterally graded doping ». Solid-State Electronics 32, no 9 (septembre 1989) : 791–95. http://dx.doi.org/10.1016/0038-1101(89)90013-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kim, Youngrok, Katharina Broch, Woocheol Lee, Heebeom Ahn, Jonghoon Lee, Daekyoung Yoo, Junwoo Kim et al. « Highly Stable Contact Doping in Organic Field Effect Transistors by Dopant‐Blockade Method ». Advanced Functional Materials 30, no 28 (25 mai 2020) : 2000058. http://dx.doi.org/10.1002/adfm.202000058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Mikami, Kyota, Keita Tachiki, Koji Ito et Tsunenobu Kimoto. « Body doping dependence of field-effect mobility in both n- and p-channel 4H-SiC metal-oxide-semiconductor field-effect transistors with nitrided gate oxides ». Applied Physics Express 15, no 3 (16 février 2022) : 036503. http://dx.doi.org/10.35848/1882-0786/ac516b.

Texte intégral
Résumé :
Abstract Both n- and p-channel SiC MOSFETs, the gate oxides of which were annealed in NO, with various body doping concentrations were fabricated. Despite the large difference in bulk mobility between electrons (1020 cm2 V−1 s−1) and holes (95 cm2 V−1 s−1), the maximum field-effect mobility in heavily-doped (∼5 × 1017 cm−3) MOSFETs was 10.3 cm2 V−1 s−1 for the n-channel and 7.5 cm2 V−1 s−1 for the p-channel devices. The measurements using body bias revealed that the field-effect mobility in both n- and p-channel SiC MOSFETs is dominated by the effective normal field rather than the body doping.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Imamura, Gaku, et Koichiro Saiki. « Effect of UV light-induced nitrogen doping on the field effect transistor characteristics of graphene ». RSC Advances 5, no 86 (2015) : 70522–26. http://dx.doi.org/10.1039/c5ra12002k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Iqbal, Muhammad Waqas, Muhammad Zahir Iqbal, Muhammad Farooq Khan, Muhammad Arslan Shehzad, Yongho Seo et Jonghwa Eom. « Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors ». Nanoscale 7, no 2 (2015) : 747–57. http://dx.doi.org/10.1039/c4nr05129g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

SUGAHARA, MASANORI, et NIKOLAI N. BOGOLUBOV. « FIELD-THEORETIC FOUNDATION OF NO-FIELD QUANTUM HALL EFFECT ». Modern Physics Letters B 16, no 18 (10 août 2002) : 645–59. http://dx.doi.org/10.1142/s0217984902004196.

Texte intégral
Résumé :
Recently, the authors discussed the possibility of the macroscopic quantum state similar to the Quantum Hall Effect in a semi-localized 2D electron system with a toroidal electron-wave amplitude in the absence of any magnetic field. In order to give the concrete statistical foundation of the study, the fermion-boson statistical transformation of the 2D electron system is made using a Chern–Simons gauge potential. Based on the solution of the resultant boson-type Hamiltonian, we construct the fermion-type solution via a unitary transformation. It is shown that the solution in the form of Laughlin function is stable when electrons form pairs. In the presence of hole doping, the pair Laughlin function leads to a representation of a superconducting state when the phase-coherence length λΘ exceeds the incompressibility length λQ, but when λΘ< λQ, it leads to a macroscopic quantum state characterized by particle-number definiteness.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wu, Enxiu, Yuan Xie, Jing Zhang, Hao Zhang, Xiaodong Hu, Jing Liu, Chongwu Zhou et Daihua Zhang. « Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation ». Science Advances 5, no 5 (mai 2019) : eaav3430. http://dx.doi.org/10.1126/sciadv.aav3430.

Texte intégral
Résumé :
Energy band engineering is of fundamental importance in nanoelectronics. Compared to chemical approaches such as doping and surface functionalization, electrical and optical methods provide greater flexibility that enables continuous, reversible, and in situ band tuning on electronic devices of various kinds. In this report, we demonstrate highly effective band modulation of MoTe2 field-effect transistors through the combination of electrostatic gating and ultraviolet light illumination. The scheme can achieve reversible doping modulation from deep n-type to deep p-type with ultrafast switching speed. The treatment also enables noticeable improvement in field-effect mobility by roughly 30 and 2 times for holes and electrons, respectively. The doping scheme also provides good spatial selectivity and allows the building of a photo diode on a single MoTe2 flake with excellent photo detection and photovoltaic performances. The findings provide an effective and generic doping approach for a wide variety of 2D materials.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Huang, Bao Xin, Jun Hua Wang, Zhen Hua Wang, Ke Zheng Chen, Yi Hua Liu et Liang Mo Mei. « The Enhanced Magnetoresistance Effect of La0.67Sr0.33MnO3 with Pentavalent Ions Addition ». Materials Science Forum 675-677 (février 2011) : 1105–8. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.1105.

Texte intégral
Résumé :
The magnetic and electrical properties of La0.67Sr0.33MnO3 ( LSMO ) are influenced very much by the Nb dopant. However, this doping effect is restricted by the limited Nb solution into LSMO due to the low calcined temperature. As a result, a second phase LaNbO4 appears in our samples. Enhancements of the low-field magnetoresistance (LFMR) were observed both at 77 K and room temperature in the manganite system prepared by doping Nb2O5 into LSMO powders. The doping amount x of Nb ions ranges from 0-10 % molar ratio. The MR ratios at 77 K with H = 1 T and H = 0.1 T are 33.8 % and 24 % for the x = 0.07 doped sample, respectively. A MR effect up to 9 % was also found for the sample with x = 0.05 at room temperature, which is 2.2 times as large as that for LSMO (4.1%). The spin dependent tunneling and scattering at the interfaces of the grain boundaries are responsible for the LFMR while the high field magnetoresistance (HFMR) originates from the spin dependent transport related to noncollinear spin structure at the interfaces.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hürner, Andreas, Heinz Mitlehner, Tobias Erlbacher, Anton J. Bauer et Lothar Frey. « Conduction Loss Reduction for Bipolar Injection Field-Effect-Transistors (BIFET) ». Materials Science Forum 858 (mai 2016) : 917–20. http://dx.doi.org/10.4028/www.scientific.net/msf.858.917.

Texte intégral
Résumé :
In this study, the potential of forward conduction loss reduction of Bipolar-Injection Field-Effect-Transistors (SiC-p-BIFET) with an intended blocking voltage of 10kV by adjusting the doping concentration in the channel-region is analyzed. For the optimization of the SiC-p-BIFET, numerical simulations were carried out. Regarding a desired turn-off voltage of approximately 25V, the optimum doping concentration in the channel-region was found to be 1.4x1017cm-3. Based on these results, SiC-p-BIFETs were fabricated and electrically characterized in the temperature range from 25°C up to 175°C. In this study, the differential on-resistance was found to be 110mΩcm2 for a temperature of 25°C and 55mΩcm2 for a temperature of 175°C. In comparison to our former results, a reduction of the differential on-resistance of about 310mΩcm2 at room temperature is demonstrated.
Styles APA, Harvard, Vancouver, ISO, etc.
23

SEN, P., N. SISODIA, R. K. CHOUBEY, S. KAR et K. S. BARTWAL. « EFFECT OF MgO DOPING ON COERCIVE FIELD IN LiNbO3 CRYSTALS ». Journal of Nonlinear Optical Physics & ; Materials 17, no 02 (juin 2008) : 175–83. http://dx.doi.org/10.1142/s0218863508004068.

Texte intégral
Résumé :
The theoretically calculated values of coercive field in doped and undoped Lithium niobate (LN) crystals show vast disparity with the available experimental data. Based on the double well potential model, we have calculated the effect of MgO doping as well as the effect of Li / Nb ratio on the coercive field in LN crystals. The theoretical results are well in agreement with the experimental observations.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Schön, J. H., M. Dorget, F. C. Beuran, X. Z. Zu, E. Arushanov, C. Deville Cavellin et M. Laguës. « Superconductivity in CaCuO2 as a result of field-effect doping ». Nature 414, no 6862 (22 novembre 2001) : 434–36. http://dx.doi.org/10.1038/35106539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wessely, F., T. Krauss et U. Schwalke. « CMOS without doping : Multi-gate silicon-nanowire field-effect-transistors ». Solid-State Electronics 70 (avril 2012) : 33–38. http://dx.doi.org/10.1016/j.sse.2011.11.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Wang, Lu, Jiaxin Zheng, Jing Zhou, Rui Qin, Hong Li, Wai-Ning Mei, Shigeru Nagase et Jing Lu. « Tuning graphene nanoribbon field effect transistors via controlling doping level ». Theoretical Chemistry Accounts 130, no 2-3 (30 août 2011) : 483–89. http://dx.doi.org/10.1007/s00214-011-1026-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wu, San Lein, et Shoou Jinn Chang. « Si field-effect transistor with doping dipole in buffer layer ». Applied Physics Letters 75, no 18 (novembre 1999) : 2848–50. http://dx.doi.org/10.1063/1.125170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Maddalena, F., E. J. Meijer, K. Asadi, D. M. de Leeuw et P. W. M. Blom. « Doping kinetics of organic semiconductors investigated by field-effect transistors ». Applied Physics Letters 97, no 4 (26 juillet 2010) : 043302. http://dx.doi.org/10.1063/1.3466903.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hepp, A., H. Heil, R. Schmechel et H. von Seggern. « Electrochemical Interface Doping in Organic Light Emitting Field Effect Transistors ». Advanced Engineering Materials 7, no 10 (octobre 2005) : 957–60. http://dx.doi.org/10.1002/adem.200500118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lee, Byoung Hoon, Guillermo C. Bazan et Alan J. Heeger. « Doping-Induced Carrier Density Modulation in Polymer Field-Effect Transistors ». Advanced Materials 28, no 1 (20 novembre 2015) : 57–62. http://dx.doi.org/10.1002/adma.201504307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Apostolova, I. N., A. T. Apostolov et J. M. Wesselinowa. « Magnetization, Band Gap and Specific Heat of Pure and Ion Doped MnFe2O4 Nanoparticles ». Magnetochemistry 9, no 3 (4 mars 2023) : 76. http://dx.doi.org/10.3390/magnetochemistry9030076.

Texte intégral
Résumé :
We have studied the magnetic properties of ion doped MnFe2O4 nanoparticles with the help of a modified Heisenberg model and Green’s function theory taking into account all correlation functions. The magnetization Ms and the Curie temperature TC increase with decreasing particle size. This is the opposite behavior than that observed in CoFe2O4 and CoCr2O4 nanoparticles. By Co, Mg or Ni doping, Ms and TC increase with enhancing the dopant concentration, whereas, by La or Gd doping, the opposite effect is obtained due to the different doping and host ionic radii which change the exchange interaction constants. The band gap energy Eg is calculated from the s–d model. It can decrease or increase by different ion doping. The peak observed in the temperature dependence of the specific heat at TC is field dependent.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Qin, Xulei, Qidong Shi, Feng Shi, Ye Li et De Song. « Effect of Gradient Doping on Charge Collection Efficiency of EBCMOS Devices ». Advances in Multimedia 2022 (29 août 2022) : 1–8. http://dx.doi.org/10.1155/2022/5157252.

Texte intégral
Résumé :
We investigated the effect of different gradient doping methods on the charge collection efficiency of the electron multiplication layer of EBCMOS devices. Exponential doping of the electron multiplication layer can form a built-in electric field in the electron multiplication layer that is favorable for photoelectron transport, so exponential doping instead of uniform doping in the electron multiplication layer of EBCMOS can effectively improve the charge collection efficiency. It is shown that exponential heavy doping on the side of the electron multiplication layer near the dead layer and exponential light doping on the side near the depletion region can improve the built-in electric field structure and increase the lifetime of the multiplied electrons, thereby improving the charge collection efficiency of EBCMOS. The optimized device achieves a charge collection efficiency of 94.48% at an incident electron energy of 4 keV, an electron beam diameter of 20 nm, a dead layer thickness of 60 nm, and a P-type silicon epitaxial layer thickness of 10 μm.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Topuria, Teya, Edward M. James, Nigel D. Browning et Zhiyong Ma. « Direct Atomic Scale Characterization of Interfaces and Doping Layers in Field-Effect Transistors. » Microscopy and Microanalysis 6, S2 (août 2000) : 140–41. http://dx.doi.org/10.1017/s1431927600033195.

Texte intégral
Résumé :
The demand for the higher performance of semiconductor devices, for instance IC functionality, has stimulated industry to further scale the critical dimensions of the semiconductor devices [6]. Also, as parasitic capacitances are reduced in small device structures, the energy loss in these devices is consequently reduced. [1] Achieving the desired performance from such reduced device structures requires optimization of both the interface properties and dopant redistribution processes, such as diffusion and segregation, under various processing conditions. Only through a careful and accurate characterization of these properties on the atomic scale in the electron microscope we can achieve the understanding of the materials interactions during processing necessary to optimize these properties [2].Conventional imaging and microanalysis techniques in transmission electron microscopy (TEM), such as phase contrast imaging and energy dispersive X-ray spectroscopy (EDS), lack either the spatial resolution or require extensive simulations and through focal series reconstructions to reveal the structure and composition of such interfaces/doping layers (and in the case of simulations may still not give a unique solution).
Styles APA, Harvard, Vancouver, ISO, etc.
34

Liu, Maomao, Sichen Wei, Simran Shahi, Hemendra Nath Jaiswal, Paolo Paletti, Sara Fathipour, Maja Remškar et al. « Enhanced carrier transport by transition metal doping in WS2 field effect transistors ». Nanoscale 12, no 33 (2020) : 17253–64. http://dx.doi.org/10.1039/d0nr01573c.

Texte intégral
Résumé :
Both generalized atomic doping and localized contact decoration using transition metal, Cu, can significantly improve the contact condition and enhance the carrier transport of two-dimensional semiconductors.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bellone, S., G. Cocorullo, G. Fallica et S. Musumeci. « Current gain enhancement effect by gate doping in bipolar-mode field-effect transistor ». IEEE Transactions on Electron Devices 37, no 1 (1990) : 303–5. http://dx.doi.org/10.1109/16.43832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Guo, B., L. Fang, B. Zhang et J. R. Gong. « Doping effect on shift of threshold voltage of graphene-based field-effect transistors ». Electronics Letters 47, no 11 (2011) : 663. http://dx.doi.org/10.1049/el.2011.0770.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Woo, Sung Oh, et Winfried Teizer. « Electron Irradiation of Graphene Field Effect Transistor Devices ». MRS Proceedings 1549 (2013) : 35–40. http://dx.doi.org/10.1557/opl.2013.946.

Texte intégral
Résumé :
ABSTRACTWe report the effects of electron irradiation on graphene Field Effect Transistor (FET) devices. We irradiated the graphene devices with 30keV electrons and measured the electrical transport properties in high vacuum in-situ. Upon electron irradiation, a Raman ‘D’ band appears. In addition, we observed that the doping behavior of the graphene devices changed from P to N type as a result of the irradiation. We also observed a shift of the Dirac point while the graphene FET device stays in vacuum and after it interacted with environmental molecules under ambient conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Xing, Boran, Ying Yu, Jiadong Yao, Xinyue Niu, Xiaoyuan Yan, Yali Liu, Xiaoxiang Wu et al. « Surface charge transfer doping and effective passivation of black phosphorus field effect transistors ». Journal of Materials Chemistry C 8, no 19 (2020) : 6595–604. http://dx.doi.org/10.1039/d0tc00740d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wang, Shunfeng, Weijie Zhao, Francesco Giustiniano et Goki Eda. « Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors ». Physical Chemistry Chemical Physics 18, no 6 (2016) : 4304–9. http://dx.doi.org/10.1039/c5cp07194a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

ZHANG, L., G. LIU, X. LENG, X. B. XU, S. Y. DING, Y. L. JIAO et L. XIAO. « MAGNETIZATION OF Ag-Y1.8Ba2.4Cu3.4O7-x ». International Journal of Modern Physics B 19, no 01n03 (30 janvier 2005) : 311–13. http://dx.doi.org/10.1142/s0217979205028475.

Texte intégral
Résumé :
Three MTG Ag-Y1.8Ba2.4Cu3.4O7-x samples were fabricated to study the effect of doping Ag on magnetization. Magnetizations measured at various temperatures and fields show two peaks for all samples: the first peak in low field and second peak in middle field. We examined the effect of doping Ag and temperature on these peaks and discussed the origin of the peaks.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lashkov, Ilia, Kevin Krechan, Katrin Ortstein, Felix Talnack, Shu-Jen Wang, Stefan C. B. Mannsfeld, Hans Kleemann et Karl Leo. « Modulation Doping for Threshold Voltage Control in Organic Field-Effect Transistors ». ACS Applied Materials & ; Interfaces 13, no 7 (11 février 2021) : 8664–71. http://dx.doi.org/10.1021/acsami.0c22224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

A. Hasan, Zaid. « Study the Effect of Magnetic Field on Polymer Doping TiO2 Nanoparticles ». NeuroQuantology 17, no 12 (30 décembre 2019) : 39–43. http://dx.doi.org/10.14704/nq.2019.17.12.nq19114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lim, Dongsuk, E. S. Kannan, Inyeal Lee, Servin Rathi, Lijun Li, Yoontae Lee, Muhammad Atif Khan, Moonshik Kang, Jinwoo Park et Gil-Ho Kim. « High performance MoS2-based field-effect transistor enabled by hydrazine doping ». Nanotechnology 27, no 22 (21 avril 2016) : 225201. http://dx.doi.org/10.1088/0957-4484/27/22/225201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Zou, J., A. Gopinath, T. Akinwande et M. S. Shur. « Heterostructure field effect transistor with doping dipole in charge control layer ». Electronics Letters 26, no 14 (1990) : 964. http://dx.doi.org/10.1049/el:19900627.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sundararajan, Abhishek, Mathias J. Boland, D. Patrick Hunley et Douglas R. Strachan. « Doping and hysteretic switching of polymer-encapsulated graphene field effect devices ». Applied Physics Letters 103, no 25 (16 décembre 2013) : 253505. http://dx.doi.org/10.1063/1.4851956.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Bezegh, Klara, Andras Bezegh, Jiri Janata, Urs Oesch, Aiping Xu et Wilhelm Simon. « Multisensing ion-selective field effect transistors prepared by ionophore doping technique ». Analytical Chemistry 59, no 24 (15 décembre 1987) : 2846–48. http://dx.doi.org/10.1021/ac00151a005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Schaur, Stefan, Philipp Stadler, Beatriz Meana-Esteban, Helmut Neugebauer et N. Serdar Sariciftci. « Electrochemical doping for lowering contact barriers in organic field effect transistors ». Organic Electronics 13, no 8 (août 2012) : 1296–301. http://dx.doi.org/10.1016/j.orgel.2012.03.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ghodrati, Maryam, Ali Mir et Ali Naderi. « Proposal of a doping-less tunneling carbon nanotube field-effect transistor ». Materials Science and Engineering : B 265 (mars 2021) : 115016. http://dx.doi.org/10.1016/j.mseb.2020.115016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Du, Yuchen, Lingming Yang, Hong Zhou et Peide D. Ye. « Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping ». IEEE Electron Device Letters 37, no 4 (avril 2016) : 429–32. http://dx.doi.org/10.1109/led.2016.2535905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wen-Shiung Lour, Jung-Hui Tsai, Lih-Wen Laih et Wen-Chau Liu. « Influence of channel doping-profile on camel-gate field effect transistors ». IEEE Transactions on Electron Devices 43, no 6 (juin 1996) : 871–76. http://dx.doi.org/10.1109/16.502117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie