Sommaire

  1. Thèses

Littérature scientifique sur le sujet « Field’s elements and forces »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Field’s elements and forces ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Thèses sur le sujet "Field’s elements and forces"

1

BRAMBILLA, ROSSANA. "La differenza pedagogica. Consistenza e funzionamento del "campo" educativo." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/25187.

Texte intégral
Résumé :
Nonostante i suoi sforzi, il sapere pedagogico risulta ancora incapace di dire qualcosa di nuovo, rispetto agli altri saperi, circa l’educazione, la società e la cultura. Mentre la pedagogia si impegna soprattutto a produrre una sempre maggior quantità di finalità educative, la sua possibilità di dire qualcosa di nuovo circa l’educazione sembra invece legata a una inesplorata interpretazione di tre concetti importanti: quelli di scienza, epistemologia e critica. Assunti radicalmente, questi tre concetti potrebbero cambiare il rapporto tra la pedagogia e l’educazione, colmando anche la storica e riconosciuta spaccatura tra teoria pedagogica e prassi educativa. Nella seconda parte del lavoro, ho studiato e analizzato il pensiero pedagogico di Riccardo Massa, evidenziandone la capacità di rispondere proprio a quei criteri di scientificità e criticità. Massa propone di studiare l’educazione nei termini di uno specifico “campo” di esperienza . Seguendo per primo questa strada, il pedagogista arriva alla formulazione di una precisa teoria della consistenza e del funzionamento del campo educativo . L’educazione, secondo lui, funziona come un “dispositivo”, cioè come un meccanismo, fatto di specifici elementi e di specifici livelli di forza. Nel terzo passaggio del lavoro, al fine di mostrare la capacità trasformativa della teoria massiana – in termini di lettura e progettazione delle pratiche educative –, ho avanzato una proposta di strutturazione e gestione alternative per dei reparti ospedalieri di riabilitazione, e anche una nuova idea di progettazione e conduzione del lavoro educativo con le famiglie.<br>Though its toils, pedagogy is still unable to say something new about education, society and culture. It continues only to produce all sort of teleologies, that is a large quantity of finalities for education. On the contrary, possibility to say something new about education seems linked to a new interpretation of three important concepts: science, epistemology and criticism. They could really let pedagogy to start a new connection with its object (education). In the second part of the work, I try to think of Riccardo Massa’s speech again. I consider his pedagogy as a new theory, able to think education as a particular “field” of experience. Education, in the opinion of Riccardo Massa, is a “device”, that is a mechanism made by specific elements and specific force levels. In the third part of the research, first, I try to use “device” theory to show a new possible way to structure and to run a rehabilitation ward. Finally, I try to use the same theory to show a new possible way to plan educational work with children families.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Adams, Roy H. Jr. "Examining the forces, causes, and elements of practical drift| A case study." Thesis, Capella University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3624518.

Texte intégral
Résumé :
<p>When a crisis captures the attention of a nation and the world community, the questions are always Why did it happen and How did it happen. Such an event was revealed on April 28, 2004 with a report on CBS's 60 Minute II and in an article by Seymour Hersh posted online in the New Yorker magazine April 30, 2004. The event was the detainee abuse by U.S. Army soldiers at Abu Ghraib Prison in Iraq. The abuse occurred between late 2003 and early 2004, and the story shook the U.S. government and the coalition partners who helped the United States bring down the Saddam Hussein regime in Iraq. This case study examined how the detainee abuse occurred and why the detainee abuse occurred by applying the theory of practical drift to the events in Iraq. However, the study revealed that while the abuse was conducted in Iraq the forces and causes were not confined to Iraq. The forces that contributed to the breakdown in soldier discipline in Iraq were the result of leadership and doctrinal decisions made decades earlier and governmental decisions made to fight the War on Terror. The study also identified stages of practical drift that illustrate how practical drift occurs in organizations. The case study avoided dealing with the actual events of the detainee abuse but concentrated on the elements that contributed to setting the conditions for the abuse. Practical drift in the war fighting doctrine development of the U.S. Army and the policies adopted by the U.S. administration to fight the War on Terror were causes of the detainee abuse identified in the case study. Individual behavioral traits of dismissive responsibility and deflected responsibility also contributed to practical drift and ultimately the detainee abuse.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rouhani, Siamak. "Temperature analyses of Concrete Frame Bridges with Finite Elements." Thesis, KTH, Bro- och stålbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145904.

Texte intégral
Résumé :
FE-modeling is a rapidly spreading method to analyze structures nowadays. With this theunderstanding of the outcome is of very high importance and potential inaccuracies areimportant to find so that faulty and over dimensioning of the structure does not occur whichleads to unnecessary costs. One of these inaccuracies is the unrealistic sectional forces that occurdue to thermal effects in the transversal direction for concrete frame bridges which leads to anexcessive amount much reinforcement in the structure than actually needed. This has beenstudied with several cases by using two approaches on how to apply the temperature in the framebridge, only in the superstructure and in the whole structure, but also by analyzing severalboundary conditions. By examining the results for the sectional forces and stresses one of thetemperature approaches could be disregarded because of the extreme values in the transitionbetween superstructure and support. But the other approach was much more useful because ofits better compliance with reality. With these results and by calculating the reinforcement neededfor the worst case, one model has been found to be the most favorable and can be used whenmodeling concrete frame bridges with acceptable outcome. The study resulted in a model whereone applies a varying temperature on the whole structure, with spring boundary conditions over asurface that represents the bottom slab.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bettess, Jacqueline Anne. "A software perspective on infinite elements for wave diffraction and wave forces on marine risers." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4289/.

Texte intégral
Résumé :
This thesis describes work on the problem of the scattering of water waves by fixed objects. The method used to solve this problem is that of finite and infinite elements. In particular the development of a new wave infinite element is described. Various aspects of the wave scattering problem are considered, but always from the perspective of the numerical methods, the algorithms and the computer implementations used. These deal not only with the modelling of the wave equations, but also the pre and post processing of the finite element algorithms. This encompasses the generation of suitable finite element meshes, in an accurate and economical way, and the presentation of the results, particularly as accurate contour plots of the wave surface. The first two chapters gives a brief introduction to water waves, and a summary of the basic concepts of finite and infinite elements. In the third chapter the new infinite element for waves, which is a development of an earlier infinite element, is described in detail, including the new mapping, the necessary shape functions and the integration of the element matrix. The earlier infinite element was restricted to the exterior of circular problems. For scattering objects of large aspect ratio this led to meshes with many finite elements, which performed no useful function, and which were computationally wasteful. The mapping in the new infinite element allows the mesh of infinite elements to be tailored to the shape of the diffracting body, without any observed loss of accuracy. It is therefore much more flexible and computationally efficient, because the infinite elements no longer need to be placed radially. The next three chapters, concentrate on the computer science aspects of the implementation of the finite and infinite elements dealing with the linked list data structures for storage of the element information, the special purpose mesh generation programs, which make it possible to analyse a large range of practical scattering problems and the plotting programs for the display of the results. The chief work in chapter six is the implementation of the Akin and Grey accurate predictor-corrector contour plotting algorithm, with colour fill. The advantage of an accurate contour plotting algorithm is that any discontinuities in the contours represent discontinuities in the results, rather than plotting deficiencies. Chapter seven shows results which validate the new infinite element, particularly on the problem of waves diffracted by an ellipse. In the remaining chapters eight to eleven, the emphasis is on a practical problem of the wave forces on groups of risers, which are the tubes which carry hydrocarbons from the sea-bed to the working areas of offshore platforms. The aim was to see if the forces on a group of risers were different from the sum of the forces on the individual risers, calculated on the assumption that the risers do not modify the wave field. The conclusion is that more detailed studies may well bring financial benefits to the companies operating offshore installations.
Styles APA, Harvard, Vancouver, ISO, etc.
5

El-Aouar, Walid Hassib. "Finite Element Analysis Based Modeling of Magneto Rheological Dampers." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/35165.

Texte intégral
Résumé :
A Finite Element model was built to analyze and examine a 2-D axisymmetric MR damper. This model has been validated with the experimental data. The results obtained in this thesis will help designers to create more efficient and reliable MR dampers. We can create some design analysis to change the shape of the piston in the damper or other parameters in the model. The main benefit of this research is to show a 2-D MR damper and generate the magnetic flux density along the MR Fluid gap. We can detect saturation by looking at the nodal solution for the magnetic flux density. Increasing the current in the model, results in an increase in magnetic induction. We studied four different configurations of an MR damper piston in order to determine how changing the shape of the piston affects the maximum force that the damper can provide. In designing MR dampers, the designer always faces the challenge of providing the largest forces in the most compact and efficient envelope. Therefore, it is important to identify the configuration that gives more force in less space. In chapter 4, shows the magnetic flux density contour before and after reaching the rheological saturation. By increasing the current, the color spectrum of the magnetic flux density will shift from the MR fluid gap to the piston centerline. In chapter 5, we provided a reasonably good amount of force in model 4 at 1.4 Amps, but it reaches saturation before the other models. For cases with power constraint or heat build up limitations, this model could work the best among the four designs that we considered. For cases where higher electrical currents can be tolerated, model 3 would be the most advantageous design, since it provides the largest force among the four models.<br>Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
6

Harrison, Stella, and Siri Nöjd. "Influence of Foundation Modelling on the Seismic Response of a Concrete Dam." Thesis, KTH, Betongbyggnad, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300448.

Texte intégral
Résumé :
It is of great importance to ensure the structural safety of dams during earthquakes since a failure may cause catastrophic consequences. Conventional computation of the structural response of dams is based on a simplified approach where the foundation is considered as massless. However, recent developments have produced several new analysis methods that consider the foundation mass, modelled with absorbing boundaries and free-field forces. These newer methods are intended to simulate the seismic structural response more accurately, optimize the design and minimise future unnecessary reparations. The aim of the thesis was to investigate the influence of foundation modelling in seismic time history analyses. This was done by comparing the established massless foundation approach to two approaches with foundation mass and free-field forces included; the analytical approach presented by Song et al. (2018) and the direct FE approach by Løkke (2018). Both the efficiency of the seismic wave propagation simulation and the structural response of the dam were of interest, and points on the dam and foundation were studied to accurately compare these modelling approaches. The time history analyses showed that the massless approach corresponded perfectly with the ideal theoretical velocity at the foundation surface when studying only the foundation block, as expected. The analytical and direct FE however, differed slightly from the theoretical value but still gave an accurate representation. Both methods using free-field forces obtained equivalent and realistic structural responses when studying the dam-reservoir-foundation model. The massless method however,strongly overestimated the dam response and was therefore found to not capture the actual behavior of the dam accurately, despite modifications such as increased material damping in the concrete. Additionally, another aim was to analyse the influence of modelling in 2D versus 3D for determining the dynamic characteristics of the dam such as natural frequencies and eigenmodes of the dam. These frequency analyses were made using models with and without foundation mass considered and was compared to experimental data.The massless 3D model was found to be the most effective modelling approach for deriving the dynamic characteristics of the dam since the use of a 3D model was necessary in order to study the behaviour of the whole dam and post-processing was simpler when using the massless model.<br>Det är nödvändigt att säkerställa dammars säkerhet mot jordbävningar i design-processen eftersom ett dammbrott kan få katastrofala konsekvenser. Traditionellt används förenklade beräkningar där dammens strukturella respons beräknas med en berggrund där bergets massa är försummad. Den senaste tiden har flera nya analysmetoder tagits fram, som tar hänsyn till bergets massa och är modellerade med absorberande randvillkor och free-field forces. De nyare metoderna förväntas modellera de seismiska krafterna mer exakt för att optimera designen och minimera onödiga reparationer. Syftet med projektet var att undersöka inverkan från olika metoders sätt att beakta berggrunden vid seismiska analyser. Det utfördes genom att jämföra den etablerade masslösa metoden med två metoder som beaktar bergmassan och free-fieldforces; den analytiska metoden av Song et al. (2018) och Direct FE-metoden av Løkke (2018). Både effektiviteten i den seismiska vågutbredningssimuleringen och dammens strukturella respons var av intresse. Modelleringsmetoderna jämfördes genom att studera punkter på både dammen och berget. När enbart berggrunden studerades med den masslösa metoden så erhölls, som förväntat, god överenstämmelse med den ideala teoretiska hastigheten på bergsytan. De analytiska och Direct FE metoderna skiljde sig marginellt från det teoretiska värdet men gav fortfarande en korrekt hastighet på bergsytan. Vid analys av modeller med dam och reservoar inkluderade, gav metoderna som använde free-field forces ekvivalenta och realistiska strukturella responser. Den masslösa metoden däremot, överskattade kraftigt dammens respons och ansågs därför inte modelleradet verkliga beteendet hos dammen på ett korrekt sätt, trots modifieringar med ökad materialdämpning i betongen. Ett annat syfte var att analysera påverkan av modellering i 2D kontra 3D för att bestämma dammens dynamiska egenskaper, som egenfrekvenser och egenmoder. Dessa frekvensanalyser gjordes med hjälp av modeller som både beaktade och försummade bergets massa, och jämfördes med experimentella data. Den masslösa 3D-modellen visade sig vara den mest effektiva modelleringsmetoden för att erhållade dynamiska egenskaperna hos dammen. Det eftersom en 3D-modell var nödvändig för att studera hela dammens beteende och hantering av utdata var förenklad vid användning av den masslösa modellen.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Michel, Kenan. "Distribution of Lateral Forces on Reinforced Masonry Bracing Elements Considering Inelastic Material Behavior - Deformation-Based Matrix Method -." Technische Universität Dresden, 2021. https://tud.qucosa.de/id/qucosa%3A75156.

Texte intégral
Résumé :
The main goal of CIC-BREL project (Cracked and Inelastic Calculation of BRacing Elements) is to develop an analytical method to distribute horizontal forces on bracing elements, in this case reinforced masonry shear walls, of a building considering the cracked and inelastic state of material. The moment curvature curve of the wall section is created first depending on the section geometry and material properties of both the masonry units and steel reinforcement. This curve will start with an elastic material behavior, then continue in inelastic material behavior where the masonry crushes and the steel start to yield, until the maximum bending moment M_p is reached. Due to reinforced masonry wall ductility, post maximum capacity is also considered assuming a maximum curvature of 0.1%. From the moment curvature curve, the force displacement curve could be extracted depending on the wall height and wall boundary conditions. Matrix formulation has been developed for both elastic and damaged stiffness matrix, considering different boundary conditions. Fixed-fixed boundary condition which usually exists at the middle stories or last story with strong top diaphragm, fixed-pinned which is the case of the last story that has a relatively soft top diaphragm, and pinned-fixed in the first story case. Other boundary conditions could be considered depending on the degree of fixation on the wall both ends at the top and the bottom. The matrix formulation combined with the force-displacement curve which considers different material stages (elastic, inelastic, ductile post peak force) is used to define forces in each bracing element even after elastic behavior. After elastic phase of each wall the stiffness of the element will degrade leading to a less portion of the total lateral force; other elastic walls, i.e., stronger walls, will receive more portion of the total force leading to a redistribution of the total force. This process will be iterated until the total force is distributed on each bracing element depending on the wall section state: elastic, inelastic and ductile post-peak capacity. Flowcharts clearly will show this process. Finally, a Fortran code is developed to show examples using this method. The developed analytical method will be verified by the results of shake table tests held at the University of California in San Diego, USA. Last test performed in the year 2018 uses T-section reinforced masonry walls, subjected to shakings with increased intensity. The total applied force for each shaking could be defined depending on the structural weight and shaking intensity (acceleration). The damage and displacement at each intensity has been recorded and evaluated. Depending on these test results, the results of the analytically developed method will be compared and evaluated. Total system displacement at different lateral load values has been compared for analytical calculations and shake table tests; furthermore, each wall state at increased load has been compared, good agreement could be noticed.:Acknowledgement 5 1. Introduction 7 1.1. State of the Art 9 1.2. Elastic Formulae 9 1.3. Example, Elastic Calculation 12 1.3.1. Stiffnesses of the System 13 1.3.2. Torsion due to Eccentric Lateral Loading 14 1.3.3. Distribution of the Lateral Load on Wall “j” and Floor “i” 15 2. Force Displacement Curve of RM Shear Wall 19 2.1. Introduction 19 2.2. Cantilever Wall 19 2.2.1. Cantilever Elastic Wall 19 2.2.2. Cantilever Inelastic Wall 21 2.2.3. Cantilever Post-Peak Wall 22 2.3. Fixed-Fixed Wall 23 2.3.1. Fixed-Fixed Elastic Wall 23 2.3.2. Fixed-Fixed Inelastic Wall 24 2.3.3. Fixed-Fixed Post-Peak Wall 26 2.4. Moment – Curvature Analysis 26 2.5. Example, Rectangle Cross Section, Cantilever 29 a) Moment Curvature Curve 29 b) Force Displacement Curve 32 2.6. Example, Rectangle Cross Section, Fixed-Fixed 33 a) Moment Curvature Curve 33 b) Force Displacement Curve 33 2.7. Example, T Cross Section, Cantilever 35 a) Moment Curvature Curve 35 b) Force Displacement Curve 41 2.8. Example, T Cross Section, Fixed-Fixed 43 a) Moment Curvature Curve 43 b) Force Displacement Curve 43 3. Matrix Formulation 47 3.1. Procedure 47 3.2. Structure Discretization 47 3.3. Element, i.e.; Wall, Local Stiffness Matrix 48 3.4. Stiffness Matrix of Fixed-Pinned Beam 52 3.4.1. Elastic 52 3.4.2. Pre-Peak Inelastic 54 3.4.3. Post-Peak Inelastic 55 3.4.4. Normal Force Part in the Stiffness Matrix 56 3.5. Stiffness Matrix of Pinned-Fixed Beam 57 3.5.1. Elastic 57 3.5.2. Post-Peak Inelastic 57 3.6. Stiffness Matrix of Fixed-Fixed Beam 58 3.6.1. Elastic 58 3.6.2. Post-Peak Inelastic 60 3.7. Summary of Stiffness Matrices 61 3.7.1. Fixed-Fixed 61 3.7.2. Fixed-Pinned 62 3.7.3. Pinned-Fixed 63 3.8. Transformation Matrix 63 3.9. Assemble the Structure Stiffness Matrix 65 3.10. Assemble the Structure Nodal Vector 66 3.11. Solve, Get Nodal Displacements and Forces 66 4. Matrix Formulation and Deformation Based Method 69 4.1. Elastic Method in Distributing Lateral Force 69 4.2. Elastic and Inelastic Method in Distributing Lateral Force 70 5. Shake Table Tests 73 5.1. Introduction 73 5.2. Design of Test Structure 73 5.3. Material Properties 75 5.4. Tests and Observations 75 5.4.1. Tests up to Mul-90% 76 5.4.2. Tests with Mul-120% 76 5.4.3. Tests with Mul-133% 76 5.5. Deformations 77 6. Verification 81 6.1. T Cross Section, Dimensions, Reinforcement and Materials 81 6.2. Moment Curvature Curve 82 6.3. Force Displacement Curve 85 6.4. Force Displacement Curve of the Structure 88 7. Conclusions and Suggestions 91 8. References 93 Appendix 1, Timoshenko Beam 95 • Fixed-Fixed 95 • Fixed-Pinned 95 • Pinned-Fixed 96 Appendix 2, Bernoulli Beam 97 • Fixed-Fixed 97 • Fixed-Pinned 97 • Pinned-Fixed 98
Styles APA, Harvard, Vancouver, ISO, etc.
8

Doolittle, John W. "Naval Special Warfare (NSW) enlisted manning concerns : key elements for succesful growth and retention of enlisted personnel /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FDoolittle.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Goby, Frédéric. "Utilisation d'une methode couplee : "elements finis-elements integrales de frontiere" pour le calcul des forces dans des dispositifs electromagnetiques : application au calcul du couple d'une machine a reluctance variable." Paris 6, 1987. http://www.theses.fr/1987PA066401.

Texte intégral
Résumé :
Le couplage de la methode des elements finis avec la methode des elements integrales de frontiere permet de resoudre plus facilement certains problemes d'electromagnetisme. On peut appliquer ce couplage au calcul des forces au sein de dispositifs electromagnetiques, en particulier pour determiner le couple d'une machine a reluctance variable
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fan, Xijun. "Numerical study on some rheological problems of fibre suspensions." Thesis, The University of Sydney, 2006. http://hdl.handle.net/2123/1096.

Texte intégral
Résumé :
This thesis deals with numerical investigations on some rheological problems of fibre suspensions: the fibre level simulation of non-dilute fibre suspensions in shear flow; the numerical simulation of complex fibre suspension flows and simulating the particle motion in viscoelastic flows. These are challenging problems in rheology. Two numerical approaches were developed for simulating non-dilute fibre suspensions from the fibre level. The first is based on a model that accounts for full hydrodynamic interactions between fibres, which are approximately calculated as a superposition of the long-range and short-range hydrodynamic interactions. The long-range one is approximated by using slender body theory and includes infinite particle interactions. The short-range one is approximated in terms of the normal lubrication forces between close neighbouring fibres. The second is based on a model that accounts only for short-range interactions, which comprise the lubrication forces and normal contact and friction forces. These two methods were applied to simulate the microstructure evolution and rheological properties of non-dilute fibre suspensions. The Brownian configuration method was combined with the highly stable finite element method to simulate the complex flow of fibre suspensions. The method is stable and robust, and can provide both micro and macro information. It does not require any closure approximations in calculating the fibre stress tensor and is more efficient and variance reduction, compared to CONNFFESSITT, for example. The flow of fibre suspensions past a sphere in a tube and the shear induced fibre migration were successfully simulated using this method The completed double layer boundary element method was extended to viscoelastic flow cases. A point-wise solver was developed to solve the constitutive equation point by point and the fixed least square method was employed to interpolate and differentiate data locally. The method avoids volume meshing and only requires the boundary mesh on particle surfaces and data points in the flow domain. A sphere settling in the Oldroyd-B fluid and a prolate spheroid rotating in shear flow of the Oldroyd-B fluid were simulated. Based on the simulated orbit of a prolate spheroid in shear flow, a constitutive model for the weakly viscoelastic fibre suspensions was proposed and its predictions were compared with some available experimental results. All simulated results are in general agreement with experimental and other numerical results reported in literature. This indicates that these numerical methods are useful tools in rheological research.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie