Articles de revues sur le sujet « Fibrosi renale »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Fibrosi renale ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Curci, C., and G. Castellano. "Fibrosi renale ed anemia: una storia tutta da scoprire." Giornale di Clinica Nefrologica e Dialisi 24, no. 1 (2018): 27–28. http://dx.doi.org/10.33393/gcnd.2012.1111.
Texte intégralLombardi, Duccio. "Rigenerazione e Proteinuria, Quando L'albumina Fa La Differenza." Giornale di Clinica Nefrologica e Dialisi 26, no. 1 (2014): 65–68. http://dx.doi.org/10.33393/gcnd.2014.864.
Texte intégralDi Lullo, L., F. Floccari, R. Rivera, et al. "La patologia del pericardio e la malattia renale cronica." Giornale di Clinica Nefrologica e Dialisi 24, no. 2 (2018): 62–70. http://dx.doi.org/10.33393/gcnd.2012.1141.
Texte intégralMasola, V., S. Granata, M. Proglio, G. Gambaro, A. Lupo, and G. Zaza. "Eparanasi: un nuovo biomarker di fibrosi e un potenziale target farmacologico per ridurre la progressione del danno renale cronico." Giornale di Clinica Nefrologica e Dialisi 24, no. 2 (2018): 10–15. http://dx.doi.org/10.33393/gcnd.2012.1131.
Texte intégralWolf, G., and G. Lehmann. "Knochenhistologie bei renaler Osteodystrophie." Osteologie 17, no. 03 (2008): 107–11. http://dx.doi.org/10.1055/s-0037-1619855.
Texte intégralD'Attoma, N., E. Residori, R. Mariotto, R. Cerini, M. Gregianin, and A. Lotto. "L'imaging della fibrosi retroperitoneale primitiva: Primitive retroperitoneal fibrosis imaging." Urologia Journal 65, no. 2 (1998): 276–86. http://dx.doi.org/10.1177/039156039806500216.
Texte intégralGaliza, Aline Xavier Fialho, Luísa Mariano Cerqueira da Silva, Luísa Grecco Correa, et al. "Perfil epidemiológico e alterações anatomopatológicas de biópsias de rins esquerdos de sete cães acometidos por Dioctophyme renale em rim direito." Research, Society and Development 10, no. 6 (2021): e50310615703. http://dx.doi.org/10.33448/rsd-v10i6.15703.
Texte intégralOelzner, Peter, Kerstin Amann, and Gunter Wolf. "Nierenbeteiligung bei Kollagenosen – Teil 2: Antiphospholipid-Syndrom, primäres Sjögren-Syndrom, systemische Sklerose." Aktuelle Rheumatologie 45, no. 02 (2020): 163–72. http://dx.doi.org/10.1055/a-1089-7347.
Texte intégralRossi, Y. A., D. C. Sousa, J. R. Rocha, V. Rodrigues, and F. G. G. Dias. "Fibrous osteodystrophy due to secondary renal hyperparathyroidism in a senile dog." Arquivo Brasileiro de Medicina Veterinária e Zootecnia 74, no. 6 (2022): 1089–95. http://dx.doi.org/10.1590/1678-4162-12713.
Texte intégralKommers, Glaucia Denise, Márcia Regina da Silva Ilha, and Claudio Severo Lombardo de Barros. "Dioctofimose em cães: 16 casos." Ciência Rural 29, no. 3 (1999): 517–22. http://dx.doi.org/10.1590/s0103-84781999000300023.
Texte intégralShin, Sug Kyun, Do Hun Kim, Heung Su Kim, et al. "Renal Osteodystrophy in Pre-Dialysis Patients: Ethnic Difference?" Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 19, no. 2_suppl (1999): 402–7. http://dx.doi.org/10.1177/089686089901902s65.
Texte intégralGu, Yue-Yu, Xu-Sheng Liu, Xiao-Ru Huang, Xue-Qing Yu та Hui-Yao Lan. "TGF-β in renal fibrosis: triumphs and challenges". Future Medicinal Chemistry 12, № 9 (2020): 853–66. http://dx.doi.org/10.4155/fmc-2020-0005.
Texte intégralFoda, Marwa SaidAbd Elsaed, HassanAbd Elhady Ahmed, YasseinSalahYassein Mohamed, and AhmedRagheb Tawfek. "Renal fibrosis." Menoufia Medical Journal 28, no. 2 (2015): 540. http://dx.doi.org/10.4103/1110-2098.163915.
Texte intégralZeisberg, Michael, Yohei Maeshima, Barbara Mosterman, and Raghu Kalluri. "Renal Fibrosis." American Journal of Pathology 160, no. 6 (2002): 2001–8. http://dx.doi.org/10.1016/s0002-9440(10)61150-9.
Texte intégralZeisberg, Michael, Gary Bonner, Yohei Maeshima, et al. "Renal Fibrosis." American Journal of Pathology 159, no. 4 (2001): 1313–21. http://dx.doi.org/10.1016/s0002-9440(10)62518-7.
Texte intégralCho, Min Hyun. "Renal fibrosis." Korean Journal of Pediatrics 53, no. 7 (2010): 735. http://dx.doi.org/10.3345/kjp.2010.53.7.735.
Texte intégralSchnaper, H. William. "Renal fibrosis." Frontiers in Bioscience 8, no. 5 (2003): e68-86. http://dx.doi.org/10.2741/925.
Texte intégralReich, B., F. Hermann, Y. Talke, et al. "Renal fibrosis." Nephrology Dialysis Transplantation 27, suppl 2 (2012): ii44—ii45. http://dx.doi.org/10.1093/ndt/gfs198.
Texte intégralValle, Bruna dos Santos, Pamela Caye, Carolina da Fonseca Sapin, et al. "Alterações anatomopatológicas e parâmetros bioquímicos séricos e urinários em cães com diagnóstico de Dioctophyme renale." Research, Society and Development 11, no. 12 (2022): e515111234874. http://dx.doi.org/10.33448/rsd-v11i12.34874.
Texte intégralEddy, Allison A. "Scraping fibrosis: UMODulating renal fibrosis." Nature Medicine 17, no. 5 (2011): 553–55. http://dx.doi.org/10.1038/nm0511-553.
Texte intégralJenkins, Joseph, Sergey V. Brodsky, Anjali A. Satoskar, Gyongyi Nadasdy, and Tibor Nadasdy. "The Relevance of Periglomerular Fibrosis in the Evaluation of Routine Needle Core Renal Biopsies." Archives of Pathology & Laboratory Medicine 135, no. 1 (2011): 117–22. http://dx.doi.org/10.5858/2009-0484-oar1.1.
Texte intégralMa, Liang, and Xiaoyong Yu. "Progress of Chinese Medicine in Regulating Altered Lipid Metabolism in Renal Fibrosis." Journal of Contemporary Medical Practice 7, no. 3 (2025): 43–47. https://doi.org/10.53469/jcmp.2025.07(03).08.
Texte intégralSun, Yu-Chao, Zhen-Zhen Qiu, Fu-Li Wen, Jin-Quan Yin, and Hao Zhou. "Revealing Potential Diagnostic Gene Biomarkers Associated with Immune Infiltration in Patients with Renal Fibrosis Based on Machine Learning Analysis." Journal of Immunology Research 2022 (April 20, 2022): 1–20. http://dx.doi.org/10.1155/2022/3027200.
Texte intégralLi, Chen, Yuan-Fei Liu, Chong Huang, Yan-Xia Chen, Cheng-Yun Xu, and Yan Chen. "Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I." American Journal of Physiology-Renal Physiology 319, no. 1 (2020): F93—F105. http://dx.doi.org/10.1152/ajprenal.00552.2019.
Texte intégralHe, Shiyang, Lan Yao, and Jun Li. "Role of MCP-1/CCR2 axis in renal fibrosis: Mechanisms and therapeutic targeting." Medicine 102, no. 42 (2023): e35613. http://dx.doi.org/10.1097/md.0000000000035613.
Texte intégralChen, Sheng. "circ_000166/miR-296 Aggravates the Process of Diabetic Renal Fibrosis by Regulating the SGLT2 Signaling Pathway in Renal Tubular Epithelial Cells." Disease Markers 2022 (May 16, 2022): 1–10. http://dx.doi.org/10.1155/2022/6103086.
Texte intégralAguirre López, Jesús Roberto, Francisco Trinidad Alberto, Jorge Enrique Sámano Pozos, Nancy Patricia López Llanes, and Francisco Jaime Torres Franco. "Obstrucción Ureteropielica Extrínseca Secundaria a Banda Fibrosa, Una Presentación Rara Descrita en la Literatura." Ciencia Latina Revista Científica Multidisciplinar 8, no. 3 (2024): 7880–90. http://dx.doi.org/10.37811/cl_rcm.v8i3.11984.
Texte intégralPan, Bixia, Guohui Liu, Zongpei Jiang, and Dongwen Zheng. "Regulation of Renal Fibrosis by Macrophage Polarization." Cellular Physiology and Biochemistry 35, no. 3 (2015): 1062–69. http://dx.doi.org/10.1159/000373932.
Texte intégralLee, SW, AK Elfadl, MJ Chung, et al. "Urocystitis, pyelonephritis, renal papillary necrosis and chronic tubulointerstitial disease causing chronic renal insufficiency in a Siberian tiger (Panthera tigris altaica): a case report." Veterinární Medicína 63, No. 10 (2018): 482–87. http://dx.doi.org/10.17221/132/2017-vetmed.
Texte intégralHou, Huixian, Mai Horikawa, Yuki Narita, et al. "Suppression of Indoxyl Sulfate Accumulation Reduces Renal Fibrosis in Sulfotransferase 1a1-Deficient Mice." International Journal of Molecular Sciences 24, no. 14 (2023): 11329. http://dx.doi.org/10.3390/ijms241411329.
Texte intégralLiu, Xiaoming, Huijuan Wang, Kai Wang, and Ying Liu. "Targeting interferon-stimulated gene of 20 kDa protein (Isg20) inhibits ribosome biogenesis to ameliorate the progression of renal fibrosis." PLOS One 20, no. 7 (2025): e0322639. https://doi.org/10.1371/journal.pone.0322639.
Texte intégralRamani, Kritika, Dong Zhou, Roderick Tan, Youhua Liu, Sarah Gaffen, and Partha Sarathi Biswas. "Disruption of Interleukin-17 receptor A (IL-17RA) gene in mice aggravates renal interstitial fibrosis in obstructive nephropathy." Journal of Immunology 196, no. 1_Supplement (2016): 51.24. http://dx.doi.org/10.4049/jimmunol.196.supp.51.24.
Texte intégralZhang, Wanfen, Xiaoping Li, Yushang Tang, Cheng Chen, Ran Jing, and Tongqiang Liu. "miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6." Oxidative Medicine and Cellular Longevity 2020 (June 8, 2020): 1–11. http://dx.doi.org/10.1155/2020/6263921.
Texte intégralKim, Kristin P., Caitlin E. Williams, and Christopher A. Lemmon. "Cell–Matrix Interactions in Renal Fibrosis." Kidney and Dialysis 2, no. 4 (2022): 607–24. http://dx.doi.org/10.3390/kidneydial2040055.
Texte intégralCao, Yu-Han, Lin-Li Lv, Xu Zhang, et al. "Urinary vimentin mRNA as a potential novel biomarker of renal fibrosis." American Journal of Physiology-Renal Physiology 309, no. 6 (2015): F514—F522. http://dx.doi.org/10.1152/ajprenal.00449.2014.
Texte intégralColon, Selene, Haiyan Luan, Yan Liu, Cameron Meyer, Leslie Gewin, and Gautam Bhave. "Peroxidasin and eosinophil peroxidase, but not myeloperoxidase, contribute to renal fibrosis in the murine unilateral ureteral obstruction model." American Journal of Physiology-Renal Physiology 316, no. 2 (2019): F360—F371. http://dx.doi.org/10.1152/ajprenal.00291.2018.
Texte intégralSugiura, Hidekazu, Takumi Yoshida, Shunji Shiohira, et al. "Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis." American Journal of Physiology-Renal Physiology 302, no. 10 (2012): F1252—F1264. http://dx.doi.org/10.1152/ajprenal.00294.2011.
Texte intégralDing, Hao, Lei Jiang, Jing Xu, et al. "Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis." American Journal of Physiology-Renal Physiology 313, no. 3 (2017): F561—F575. http://dx.doi.org/10.1152/ajprenal.00036.2017.
Texte intégralSun, Donglin, Jing Guo, Weifei Liang, Yangxiao Chen, Xiangqiu Chen, and Li Wang. "Anlotinib Alleviates Renal Fibrosis via Inhibition of the ERK and AKT Signaling Pathways." Oxidative Medicine and Cellular Longevity 2023 (February 18, 2023): 1–11. http://dx.doi.org/10.1155/2023/1686804.
Texte intégralCao, Yuhan, Yuwei Wang, Yinhua Liu, et al. "Decreased Expression of Urinary Mammalian Target of Rapamycin mRNA Is Related to Chronic Renal Fibrosis in IgAN." Disease Markers 2019 (August 14, 2019): 1–10. http://dx.doi.org/10.1155/2019/2424751.
Texte intégralLusiana, Evi, and Legiran Legiran. "Potential therapy of umbilical cord mesenchymal stem cells (UC-MSC) in renal fibrosis." Sains Medika: Jurnal Kedokteran dan Kesehatan 14, no. 1 (2023): 28. http://dx.doi.org/10.30659/sainsmed.v14i1.22458.
Texte intégralPan, Shengyu, Tianhui Yuan, Yuqi Xia, Weimin Yu, Xiangjun Zhou, and Fan Cheng. "Role of Histone Modifications in Kidney Fibrosis." Medicina 60, no. 6 (2024): 888. http://dx.doi.org/10.3390/medicina60060888.
Texte intégralZhao, Jinfeng, Yue Guan, Yingxiu Jia, Yinghua Chen, and Yue Cai. "Aerobic exercise up-regulates Klotho to improve renal fibrosis associated with aging and its mechanism." PLOS ONE 19, no. 9 (2024): e0311055. http://dx.doi.org/10.1371/journal.pone.0311055.
Texte intégralZhang, Mingkang, Ruirui Cui, Yan Zhou та ін. "Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress". International Journal of Molecular Sciences 24, № 13 (2023): 10839. http://dx.doi.org/10.3390/ijms241310839.
Texte intégralBülow, Roman David, and Peter Boor. "Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold." Journal of Histochemistry & Cytochemistry 67, no. 9 (2019): 643–61. http://dx.doi.org/10.1369/0022155419849388.
Texte intégralO'Donnell, Michael P. "Renal tubulointerstitial fibrosis." Postgraduate Medicine 108, no. 1 (2000): 159–72. http://dx.doi.org/10.3810/pgm.2000.07.1155.
Texte intégralFarris, Alton B., and Robert B. Colvin. "Renal interstitial fibrosis." Current Opinion in Nephrology and Hypertension 21, no. 3 (2012): 289–300. http://dx.doi.org/10.1097/mnh.0b013e3283521cfa.
Texte intégralWang, Yashu, Xinna Deng, Jinying Wei та ін. "Irisin ameliorates UUO-induced renal interstitial fibrosis through TGF-β1/periostin/MMP-2 signaling pathway". PLOS ONE 19, № 6 (2024): e0299389. http://dx.doi.org/10.1371/journal.pone.0299389.
Texte intégralSun, Qinxue, Maike Baues, Barbara M. Klinkhammer, et al. "Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis." Science Translational Medicine 11, no. 486 (2019): eaat4865. http://dx.doi.org/10.1126/scitranslmed.aat4865.
Texte intégralSang, Yizhen, Kenji Tsuji, Kazuhiko Fukushima, Kensaku Takahashi, Shinji Kitamura, and Jun Wada. "Semaporin3A inhibitor ameliorates renal fibrosis through the regulation of JNK signaling." American Journal of Physiology-Renal Physiology 321, no. 6 (2021): F740—F756. http://dx.doi.org/10.1152/ajprenal.00234.2021.
Texte intégral