Littérature scientifique sur le sujet « Ferromagnetic sheets »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ferromagnetic sheets ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ferromagnetic sheets"
Wang, Bo, San Zhang, Xinyue Chen, Fujie Wang et Baohui Xu. « Experimental and Numerical Analyses of a Novel Magnetostatic Force Sensor for Defect Inspection in Ferromagnetic Materials ». Magnetochemistry 8, no 12 (7 décembre 2022) : 182. http://dx.doi.org/10.3390/magnetochemistry8120182.
Texte intégralCauffet, G., J. L. Coulomb, S. Guerin, O. Chadebec et Y. Vuillermet. « Identification of ferromagnetic thin sheets magnetization ». COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 27, no 1 (4 janvier 2008) : 56–63. http://dx.doi.org/10.1108/03321640810836636.
Texte intégralShudo, Yuta, Md Saidul Islam, Hikaru Zenno, Masahiro Fukuda, Manabu Nakaya, Nurun Nahar Rabin, Yoshihiro Sekine, Leonard F. Lindoy et Shinya Hayami. « Engineering ferromagnetism in Ni(OH)2 nanosheets using tunable uniaxial pressure in graphene oxide/reduced graphene oxide ». Physical Chemistry Chemical Physics 23, no 42 (2021) : 24233–38. http://dx.doi.org/10.1039/d1cp03387e.
Texte intégralKrzymień, Wiesław. « Mechanical Properties of the Package of Ferromagnetic Sheets ». Transactions on Aerospace Research 2017, no 1 (1 mars 2017) : 54–62. http://dx.doi.org/10.2478/tar-2017-0006.
Texte intégralYoon, Im Taek, Yoon Shon, Younghae Kwon, T. W. Kang et Chang Soo Park. « Ferromagnetic properties of Mn/graphene/SiO2 sheets ». Journal of the Korean Physical Society 65, no 5 (septembre 2014) : 728–32. http://dx.doi.org/10.3938/jkps.65.728.
Texte intégralZhao, Qi, Qing Lu, Yi Liu et Mingzhe Zhang. « Two-dimensional Dy doped MoS2 ferromagnetic sheets ». Applied Surface Science 471 (mars 2019) : 118–23. http://dx.doi.org/10.1016/j.apsusc.2018.12.010.
Texte intégralZhang, Xiangyong, Haipeng Liu, Yunli He, Tingrui Peng, Bin Su et Huiyuan Guan. « Analysis of the Influence of Ferromagnetic Material on the Output Characteristics of Halbach Array Energy-Harvesting Structure ». Micromachines 12, no 12 (11 décembre 2021) : 1541. http://dx.doi.org/10.3390/mi12121541.
Texte intégralGroniecki, P., C. L. Ramiarinjaona et J. F. Rialland. « Predetermination of the magnetic characteristics of stacked ferromagnetic sheets ». Journal of Magnetism and Magnetic Materials 133, no 1-3 (mai 1994) : 621–23. http://dx.doi.org/10.1016/0304-8853(94)90638-6.
Texte intégralLiu, Ya-Bin, Yi Liu et Guang-Han Cao. « Iron-based magnetic superconductors AEuFe4As4 (A = Rb, Cs) : natural superconductor–ferromagnet hybrids ». Journal of Physics : Condensed Matter 34, no 9 (15 décembre 2021) : 093001. http://dx.doi.org/10.1088/1361-648x/ac3cf2.
Texte intégralMuddassir, Muhammad, Miro Duhovic et Martin Gurka. « A comprehensive study of metal-coated short carbon fibers, graphite particles, and hybrid fillers for induction heating ». Journal of Thermoplastic Composite Materials 33, no 3 (30 octobre 2018) : 393–412. http://dx.doi.org/10.1177/0892705718806344.
Texte intégralThèses sur le sujet "Ferromagnetic sheets"
Marbouh, Othmane. « Capteurs à ondes acoustiques de surface pour la caractérisation multiphysique des propriétés des tôles ferromagnétiques dans les machines électriques de fortes puissances ». Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0019.
Texte intégralHigh-power electrical machines are subjected to severe mechanical, thermal, and magnetic stresses during operation. To ensure their reliability and continuous operation, it is crucial to have real-time information on these constraints, often at a local scale. Wireless and battery-free sensor technologies, combined with effective data analysis and signal processing techniques, are essential to meet this need. Surface acoustic waves (SAW) allow the design of wireless and completely passive sensors capable of measuring various physical quantities such as temperature, mechanical stress, and magnetic fields, thanks to advanced design engineering. The work carried out in this thesis has enabled the development of multi-quantity SAW sensors for measuring deformations, temperature, and magnetic fields. These sensors were first calibrated on laboratory test benches and then used to characterize the mechanical properties, such as magnetostriction, and magnetic properties, such as magnetic losses, of ferromagnetic sheets used in the design of high-power electrical machines. Characterizing the properties of ferromagnetic sheets is crucial for several reasons: designing efficient electromagnetic systems, minimizing vibrations and unwanted noise, controlling energy dissipation, preventing material fatigue, optimizing component design for energy efficiency, and developing heat-resistant components for reliability and durability. The thesis project involves JEUMONT Electric (a high-tech company specializing in energy conversion solutions), the AIMAN-FILMS group from IEMN, and the Numerical Tools and Methods team from L2EP. Each partner brings specific expertise to address the multi-physical instrumentation of high-power electrical machines
Ababsa, Mohamed Lamine. « Caractérisation de composants magnétiques et diélectriques pour les machines électriques tournantes très haute température High temperature magnetic characterization using an adapted Epstein frame High temperature characterization of electrical steels using an adapted Epstein frame ». Thesis, Artois, 2018. http://www.theses.fr/2018ARTO0205.
Texte intégralIn this thesis work, we carried out a magnetic characterization measurements (hysteresis cycles, losses, H_c...) at very high temperatures up to 600 °C, using a characterization device adapted to these extremes conditions which is an Epstein frame that we have developed and implemented. Its validation is verified with a standard frame at ambient temperature. The measurements are performed by two types of ferromagnetic sheets mostly used: FeSi GO and NO. The results show a decrease with temperature in iron losses and different parameters which define the hysteresis cycle, and expose a similarity between the variation of coercive field and the losses per cycle. Subsequently, we described the losses and the coercive field as a function of temperature and frequency. That is done by a linear empirical equations in case of saturated materials and by an extension at high temperature of the Bertotti equation via an identification of its parameters in case of unsaturated materials. In a second phase, by measuring the voltage of partial discharge and of the electrical breakdown we characterized the insulation of a conductor intended to be used at a high temperature covered by mica; this later has an inorganic origin. These results show that the inhomogeneity of this insulation along of the conductor causes destructive discharges without appearance of partial discharges. This kind of wire consists of copper surrounded by a thin nickel layer and this later has been characterized magnetically during our work
Livres sur le sujet "Ferromagnetic sheets"
Zapperi, Stefano. Crackling Noise. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192856951.001.0001.
Texte intégralChapitres de livres sur le sujet "Ferromagnetic sheets"
Baghdasaryan, Gevorg Y., et Marine A. Mikilyan. « Vibrations and Stability of Soft Ferromagnetic Plates in a Magnetic Field ». Dans Magnetoelastic Vibrations and Stability of Magnetically Active Plates and Shells, 31–109. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-60307-5_2.
Texte intégralPreeti, Kaushik, Mishra Upendra et Vinai Kumar Singh. « Slip Effect on an Unsteady Ferromagnetic Fluid Flow Toward Stagnation Point Over a Stretching Sheet ». Dans Trends in Mathematics, 251–65. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68281-1_19.
Texte intégralChikazumi, Sōshin, et C. D. Graham, Jr. « Microscopic Experimental Techniques ». Dans Physics of Ferromagnetism, 84–104. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198517764.003.0004.
Texte intégralActes de conférences sur le sujet "Ferromagnetic sheets"
Sujan, Y., B. Vasuki, G. Uma, D. Ezhilarasi et K. Suresh. « Thickness sensor for ferromagnetic sheets ». Dans 2012 Sixth International Conference on Sensing Technology (ICST 2012). IEEE, 2012. http://dx.doi.org/10.1109/icsenst.2012.6461797.
Texte intégralAntonio, S. Quondam, et H. Prasad Rimal. « Power Losses in Ferromagnetic Steel Sheets for Avionic Environment ». Dans 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI). IEEE, 2018. http://dx.doi.org/10.1109/rtsi.2018.8548458.
Texte intégralWang, Hsin-Min, Tien-Kan Chung, Chin-Chung Chen, Chih-Cheng Cheng et Chu-Yi Lin. « A Novel Mechanical-Mechanism Enhanced Thermomagnetic Tweezer Demonstrating Gripping of Ferromagnetic and Non-Ferromagnetic Objects ». Dans ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9048.
Texte intégralMüller, F., G. Bavendiek, N. Leuning, B. Schauerte et K. Hameyer. « Consideration of ferromagnetic anisotropy in electrical machines built of segmented silicon steel sheets ». Dans Tenth International Conference on Computational Electromagnetics (CEM 2019). Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/cp.2019.0115.
Texte intégralTolofari, Tamuno-Ibim, Behzad Behravesh, Dulal Saha, Jim Chen, Marie Mills, Wensheng Zhang, Gianni Lamonaca et Hamid Jahed. « Fatigue Behaviour of Thin Electrical Steel Sheets at Room Temperature ». Dans WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0805.
Texte intégralHamada, Souad, Fatirna-Zohra Louai et Nasreddine Nait-Said. « Modeling and Analysing the Influence of both Frequency and Mechanical Stress on Ferromagnetic Sheets NO Fe 3%Si using Improved Low Frequency Diffusion Equation Model ». Dans 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2020. http://dx.doi.org/10.1109/ic_aset49463.2020.9318282.
Texte intégralRacewicz, Szymon, Delphine M. Riu, Nicolas M. Retiere et Piotr J. Chrzan. « Half-order modelling of ferromagnetic sheet ». Dans 2011 IEEE 20th International Symposium on Industrial Electronics (ISIE). IEEE, 2011. http://dx.doi.org/10.1109/isie.2011.5984227.
Texte intégralTian, Jiawei, Xianfeng David Gu et Shikui Chen. « Multi-Material Topology Optimization of Ferromagnetic Soft Robots Using Reconciled Level Set Method ». Dans ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-67821.
Texte intégralKaleta, Anna. « Enhanced Ferromagnetism in strained MnAs Nanocrystals Embedded in Wurtzite GaAs Nanowire Shells ». Dans European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.930.
Texte intégralDebnath, Anup, et Shyamal Kumar Saha. « Realization of a ferromagnetic ordering in an ultrathin layer of antiferromagnetic β-Co(OH)2 grown on a reduced graphene oxide sheet ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS : ICAM 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130274.
Texte intégral