Articles de revues sur le sujet « Ferromagnetic Quantum Dots »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Ferromagnetic Quantum Dots.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Ferromagnetic Quantum Dots ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

GAO, PAN, SUHANG LIU, LIN TIAN et TIANXING MA. « QUANTUM MONTE CARLO STUDY OF MAGNETIC CORRELATION IN GRAPHENE NANORIBBONS AND QUANTUM DOTS ». Modern Physics Letters B 27, no 21 (11 août 2013) : 1330016. http://dx.doi.org/10.1142/s0217984913300160.

Texte intégral
Résumé :
To realize the application of spintronics, possible magnetism in graphene-based material is an important issue to be addressed. At the tight banding level of armchair graphene nanoribbons, there are two flat bands in the band structure, two Van Hove singularities in the density of states, and the introducing of the next-nearest-neighbor hopping term cause high asymmetry in them, which plays a key role in the behavior of magnetic correlation. We further our studies within determinant quantum Monte Carlo simulation to treat the electron–electron interaction. It is found that the armchair graphene nanoribbons show carrier mediated magnetic correlation. In the armchair graphene nanoribbons, the antiferromagnetic correlation dominates around half filling, while the ferromagnetic correlation dominates as electron filling is lower than 0.8. Moreover, the ferromagnetic correlation is strengthened markedly as the next-nearest-neighbor hopping energy increases. The resultant manipulation of ferromagnetism in graphene-based material may facilitate the development of spintronics.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Omariy, Aiman Al, et Reim Almotiriz y. « QUANTUM DOTS IN FERROMAGNETIC HEISENBERG MODEL ». EPH - International Journal of Applied Science 2, no 4 (27 décembre 2016) : 1–5. http://dx.doi.org/10.53555/eijas.v2i4.24.

Texte intégral
Résumé :
Quantum Dots (QDs) are semiconductor-nanostructure materials which are also called arti cial atoms. QDs are classi ed as ferromagnetic material. Theoretically, Heisenberg model is regarded as a good model in describing these QDs. We applied Spin Wave Theory (SWT) on the above mentioned model to explore the physical properties of these materials, such as ground state energy, excitation energy and magnetization. We found that the ground state energy "g increased with the applied external magnetic eld B as B0:3. A phase transition was also observed around B~1T, which indicate a transition from singlet to a triplet state. Staggered magnetization reaches saturation around this point of transition.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ma, Xi Ying. « Fabrication of Ferromagnetic Ge Quantum Dots Material ». Advanced Materials Research 531 (juin 2012) : 71–74. http://dx.doi.org/10.4028/www.scientific.net/amr.531.71.

Texte intégral
Résumé :
GeMn magnetic quantum dots (QDs) material were grown with a GeH4/Ar mixed gas under a constant flowing at 400°C by means of plasma enhanced chemical vapor deposition (PECVD) process, then doped with Mn doped using magnetic sputtering technique and annealed at 600 C. The QDs with a Ge0.88Mn0.12 structure derived from the energy spectrum show a wide opening hysteresis loops with a large remnant magnetizations Mr are 0.1410-4 and 0.2510-4 emu/g for the as grown and the annealed samples. Moreover, the magnetic QDs show high quality voltage-current (I-V) and voltage-capacitance (C-V) properties. The magnetic GeMn QDs can be used to fabrication electromagnetic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xiu, Faxian. « Magnetic Mn-Doped Ge Nanostructures ». ISRN Condensed Matter Physics 2012 (7 mai 2012) : 1–25. http://dx.doi.org/10.5402/2012/198590.

Texte intégral
Résumé :
With the seemly limit of scaling on CMOS microelectronics fast approaching, spintronics has received enormous attention as it promises next-generation nanometric magnetoelectronic devices; particularly, the electric field control of ferromagnetic transition in dilute magnetic semiconductor (DMS) systems offers the magnetoelectronic devices a potential for low power consumption and low variability. Special attention has been given to technologically important group IV semiconductor based DMSs, with a prominent position for Mn doped Ge. In this paper, we will first review the current theoretical understanding on the ferromagnetism in MnxGe1−x DMS, pointing out the possible physics models underlying the complicated ferromagnetic behavior of MnxGe1−x. Then we carry out detailed analysis of MnxGe1−x thin films and nanostructures grown by molecular beam epitaxy. We show that with zero and one dimension quantum structures, superior magnetic properties of MnxGe1−x compared with bulk films can be obtained. More importantly, with MnxGe1−x nanostructures, such as quantum dots, we demonstrate a field controlled ferromagnetism up to 100 K. Finally we provide a prospective of the future development of ferromagnetic field effect transistors and magnetic tunneling junctions/memories using dilute and metallic MnxGe1−x dots, respectively. We also point out the bottleneck problems in these fields and rendering possible solutions to realize practical spintronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
5

MA, QIONG, TAO TU, LI WANG, HAI-OU LI, ZHI-RONG LIN, MING XIAO et GUO-PING GUO. « SUBSTRATE MODULATED GRAPHENE QUANTUM DOTS ». Modern Physics Letters B 26, no 25 (7 septembre 2012) : 1250162. http://dx.doi.org/10.1142/s021798491250162x.

Texte intégral
Résumé :
We propose a method to use gapped graphene as barriers to confine electrons in gapless graphene and form a good quantum dot, which can be realized on an oxygen-terminated SiO 2 substrate partly hydrogen-passivated. In particular, we use deposited ferromagnetic insulators as contacts which give rise to spin-dependent energy spectrum and transport properties. Furthermore, we upgrade this method to form two-dimensional quantum dot arrays, whose coupling strength between neighboring dots can be uniquely anisotropic. Compared to complexity of other approaches to form quantum dot in graphene, the setup suggested here is a promising candidate for practical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Xiu, Faxian, Igor V. Ovchinnikov, Pramey Upadhyaya, Kin Wong, Xufeng Kou, Yi Zhou et Kang L. Wang. « Voltage-controlled ferromagnetic order in MnGe quantum dots ». Nanotechnology 21, no 37 (20 août 2010) : 375606. http://dx.doi.org/10.1088/0957-4484/21/37/375606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ramlan, Dinna G., Steven J. May, Jian-Guo Zheng, Jonathan E. Allen, Bruce W. Wessels et Lincoln J. Lauhon. « Ferromagnetic Self-Assembled Quantum Dots on Semiconductor Nanowires ». Nano Letters 6, no 1 (janvier 2006) : 50–54. http://dx.doi.org/10.1021/nl0519276.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yang, J. Y., K. S. Yoon, Y. H. Do, C. O. Kim, J. P. Hong, Y. H. Rho et H. J. Kim. « Ferromagnetic quantum dots formed by external laser irradiation ». Journal of Applied Physics 93, no 10 (15 mai 2003) : 8766–68. http://dx.doi.org/10.1063/1.1558600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yan, Wensheng, Qinghua Liu, Chao Wang, Xiaoyu Yang, Tao Yao, Jingfu He, Zhihu Sun et al. « Realizing Ferromagnetic Coupling in Diluted Magnetic Semiconductor Quantum Dots ». Journal of the American Chemical Society 136, no 3 (10 janvier 2014) : 1150–55. http://dx.doi.org/10.1021/ja411900w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Martinek, J., Y. Utsumi, H. Imamura, J. Barnaś, S. Maekawa et G. Schön. « Kondo effect in quantum dots coupled to ferromagnetic electrodes ». Physica E : Low-dimensional Systems and Nanostructures 18, no 1-3 (mai 2003) : 75–76. http://dx.doi.org/10.1016/s1386-9477(02)00980-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Yoon, I. T., S. W. Lee, T. W. Kang, Dongwan Koh et D. J. Fu. « Ferromagnetic Properties of Mn-Implanted Ge∕Si Quantum Dots ». Journal of The Electrochemical Society 155, no 1 (2008) : K1. http://dx.doi.org/10.1149/1.2800756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Aguiar Hualde, J. M., G. Chiappe et E. V. Anda. « Kondo spin splitting in quantum dots with ferromagnetic leads ». physica status solidi (c) 3, no 11 (décembre 2006) : 3778–81. http://dx.doi.org/10.1002/pssc.200671558.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Phuong, Luong Thi Kim, et An Manh Nguyen. « Epitaxial Growth of High Curie-Temperature Ge1-xMnx quantum dots on Si(001) by auto-assembly ». Communications in Physics 24, no 1 (23 mars 2014) : 69. http://dx.doi.org/10.15625/0868-3166/24/1/3477.

Texte intégral
Résumé :
We report on successful growth of epitaxial and high Curie-temperature Ge1-xMnx quantum dots on Si (001) substrates using the auto-assembled approach. By reducing the growth temperature down to 400 °C, we show that the Mn diffusion into the Si substrate can be neglected. No indication of secondary phases or clusters was observed. Ge1-xMnx quantum dots were found to be epitaxial and perfectly coherent to the Si substrate. We also observe ferromagnetic ordering in quantum dots at a temperature higher 320 K. It is believed that single-crystalline quantum dots exhibiting a high Curie temperature are potential candidates for spin injection at temperatures higher than room temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Guo-Hui, Ding, et Ye Fei. « Quantum Phase Transition and Ferromagnetic Spin Correlation in Parallel Double Quantum Dots ». Chinese Physics Letters 24, no 10 (28 septembre 2007) : 2926–29. http://dx.doi.org/10.1088/0256-307x/24/10/059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Pan, Hui, Ziyu Chen, Sufen Zhao et Rong Lü. « Quantum spin and charge pumping through double quantum dots with ferromagnetic leads ». Physics Letters A 375, no 23 (juin 2011) : 2239–45. http://dx.doi.org/10.1016/j.physleta.2011.04.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yadav, Amar Nath, Jasleen K. Bindra, Narendra Jakhar et Kedar Singh. « Switching-on superparamagnetism in diluted magnetic Fe(iii) doped CdSe quantum dots ». CrystEngComm 22, no 10 (2020) : 1738–45. http://dx.doi.org/10.1039/c9ce01391a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

BHATT, R. N., et ERIK NIELSEN. « FERROMAGNETISM IN DOPED SEMICONDUCTORS WITHOUT MAGNETIC IONS ». International Journal of Modern Physics B 22, no 25n26 (20 octobre 2008) : 4595–606. http://dx.doi.org/10.1142/s0217979208050358.

Texte intégral
Résumé :
While ferromagnetism has been obtained above 100 K in doped semiconductors with magnetic ions such as Ga 1−x Mn x As , bulk doped semiconductors in the absence of magnetic ions have shown no tendency towards ferromagnetism. We re-examine the nonmagnetic doped semiconductor system at low carrier densities in terms of a generalized Hubbard model. Using exact diagonalization of the many-body Hamiltonian for finite clusters, we find that the system exhibits significant ferromagnetic tendencies at nanoscales, in a region of parameter space not accessible to bulk systems, but achievable in quantum dots and heterostructures. Implications for studying these effects in experimentally realizable systems, as well as the possibility of true (macroscopic) ferromagnetism in these systems is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhao, Jianing, Xiaoli Li et Zhiguo Li. « Synthesis of Co-Doped CdS Nanocrystals by Direct Thermolysis of Cadmium and Cobalt Thiolate Clusters ». Journal of Nanomaterials 2015 (2015) : 1–11. http://dx.doi.org/10.1155/2015/109734.

Texte intégral
Résumé :
Co-doped CdS (Co:CdS) nanocrystals with controllable morphology (quantum dots and nanorods) were easily synthesized by direct thermolysis of (Me4N)2[Co4(SC6H5)10] and (Me4N)4[S4Cd10(SPh)16] under different precursor concentration, in virtue of the ions exchange of molecular clusters. The Co:CdS quantum dots were produced under low precursor concentration, and the Co:CdS nanorods could be obtained under higher precursor concentration. The Co-doping effect on the structure, growth process, and property of CdS nanocrystals was also investigated. The results indicated that the Co-doping was favorable for the formation of the nanorod structures for a short reaction time. In addition, the Co-doping in the CdS lattice resulted in the ferromagnetic property of the Co:CdS quantum dots at room temperature. Moreover, compared with the CdS quantum dots, the Co:CdS quantum dots exhibited obvious quantum confinement effect and photoluminescence emission with slightly red-shift.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Sriharsha, Karumuri, Le Duc Anh et Masaaki Tanaka. « Ferromagnetic Fe-doped InAs quantum dots with high Curie temperature ». Applied Physics Express 14, no 8 (19 juillet 2021) : 083002. http://dx.doi.org/10.35848/1882-0786/ac1182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chen, Lin, Fengchun Hu, Hengli Duan, Qinghua Liu, Hao Tan, Wensheng Yan, Tao Yao, Yong Jiang, Zhihu Sun et Shiqiang Wei. « Intrinsic ferromagnetic coupling in Co3O4 quantum dots activatedby graphene hybridization ». Applied Physics Letters 108, no 25 (20 juin 2016) : 252402. http://dx.doi.org/10.1063/1.4954715.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Yoshizumi, Hitoshi, Tomoko Kita et Sei-ichiro Suga. « Multiorbital Kondo effect in quantum dots coupled to ferromagnetic leads ». Physica E : Low-dimensional Systems and Nanostructures 42, no 4 (février 2010) : 868–70. http://dx.doi.org/10.1016/j.physe.2009.10.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ca, N. X., N. T. Hien, P. N. Loan, P. M. Tan, U. T. D. Thuy, T. L. Phan et Q. B. Nguyen. « Optical and Ferromagnetic Properties of Ni-Doped CdTeSe Quantum Dots ». Journal of Electronic Materials 48, no 4 (12 février 2019) : 2593–99. http://dx.doi.org/10.1007/s11664-019-07017-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Pan, Lei, YuanDong Wang, ZhenHua Li, JianHua Wei et YiJing Yan. « Kondo effect in double quantum dots with ferromagnetic RKKY interaction ». Journal of Physics : Condensed Matter 29, no 2 (14 novembre 2016) : 025601. http://dx.doi.org/10.1088/0953-8984/29/2/025601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Swain, Akshaya Kumar, Dan Li et Dhirendra Bahadur. « UV-assisted production of ferromagnetic graphitic quantum dots from graphite ». Carbon 57 (juin 2013) : 346–56. http://dx.doi.org/10.1016/j.carbon.2013.01.082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

ABDELRAZEK, AHMED S., WALID A. ZEIN et ADEL H. PHILLIPS. « SPIN-DEPENDENT GOOS–HANCHEN EFFECT IN SEMICONDUCTING QUANTUM DOTS ». SPIN 03, no 02 (juin 2013) : 1350007. http://dx.doi.org/10.1142/s2010324713500070.

Texte intégral
Résumé :
The present research is devoted to the investigation of the spin-dependant Goos–Hanchen phase shift in quantum nanodevice. This nanodevice is modeled as semiconducting quantum dot coupled to two ferromagnetic leads. The spin transport through such nanodevice is conducted under the effect of both magnetic field and the photon energy of the induced ac-field. The angle of incidence of electrons is taken into account. Results show that the Goos–Hanchen phase shift of spin-up electrons is different from that of spin-down electron. Also, spin polarization and giant magneto-resistance are strongly depending on the angle of incidence of electrons and the photon energy of the induced ac-field. The present model could realize experimentally the spin beam splitter and spin filter needed for spin qubits and quantum information processing.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Yang, Maolong, Liming Wang, Jie You, Lingyao Meng, Yichi Zhang, Bo Wang, Bin Wang et Huiyong Hu. « Growth and Magnetism of MnxGe1−x Heteroepitaxial Quantum Dots Grown on Si Wafer by Molecular Beam Epitaxy ». Crystals 10, no 6 (23 juin 2020) : 534. http://dx.doi.org/10.3390/cryst10060534.

Texte intégral
Résumé :
Self-assembled MnGe quantum dots (QDs) were grown on Si (001) substrates using molecular beam epitaxy with different growth temperatures and Ge deposition thicknesses to explore the interaction among Mn doping, Ge deposition, the formation of intermetallics, and the ferromagnetism of QDs. With the introduction of Mn atoms, the QDs become large and the density significantly decreases due to the improvement in the surface migration ability of Ge atoms. The growth temperature is one of the most important factors deciding whether intermetallic phases form between Mn and Ge. We found that Mn atoms can segregate from the Ge matrix when the growth temperature exceeds 550 °C, and the strongest ferromagnetism of QDs occurs at a growth temperature of 450 °C. As the Ge deposition thickness increases, the morphology of QDs changes and the ferromagnetic properties decrease gradually. The results clearly indicate the morphological evolution of MnGe QDs and the formation conditions of intermetallics between Mn and Ge, such as Mn5Ge3 and Mn11Ge8.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Trocha, Piotr, Emil Siuda et Ireneusz Weymann. « Spin-polarized transport in quadruple quantum dots attached to ferromagnetic leads ». Journal of Magnetism and Magnetic Materials 546 (mars 2022) : 168835. http://dx.doi.org/10.1016/j.jmmm.2021.168835.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Weymann, I., et J. Barnaś. « Transport through two-level quantum dots weakly coupled to ferromagnetic leads ». Journal of Physics : Condensed Matter 19, no 9 (14 février 2007) : 096208. http://dx.doi.org/10.1088/0953-8984/19/9/096208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Cong-Hua, Yan, Wu Shao-Quan, Huang Rui et Sun Wei-Li. « Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads ». Chinese Physics Letters 23, no 7 (28 juin 2006) : 1888–91. http://dx.doi.org/10.1088/0256-307x/23/7/064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Weymann, I., et C. P. Moca. « Frequency-dependent conductance of Kondo quantum dots coupled to ferromagnetic leads ». Journal of Applied Physics 109, no 7 (avril 2011) : 07C704. http://dx.doi.org/10.1063/1.3544491.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Pan, Hui, et Rong Lü. « Spin accumulation in coupled quantum dots with ferromagnetic and superconducting electrodes ». Physica B : Condensed Matter 403, no 18 (septembre 2008) : 3125–29. http://dx.doi.org/10.1016/j.physb.2008.03.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wilczyński, M., R. Świrkowicz, W. Rudziński, J. Barnaś et V. Dugaev. « Quantum dots attached to ferromagnetic leads : possibility of new spintronic devices ». Journal of Magnetism and Magnetic Materials 290-291 (avril 2005) : 209–12. http://dx.doi.org/10.1016/j.jmmm.2004.11.184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Braun, M., J. König et J. Martinek. « Hanle effect in transport through quantum dots coupled to ferromagnetic leads ». Europhysics Letters (EPL) 72, no 2 (octobre 2005) : 294–300. http://dx.doi.org/10.1209/epl/i2005-10230-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Weymann, I. « Cotunneling through two-level quantum dots weakly coupled to ferromagnetic leads ». Europhysics Letters (EPL) 76, no 6 (décembre 2006) : 1200–1206. http://dx.doi.org/10.1209/epl/i2006-10398-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wójcik, K. P., I. Weymann et J. Barnaś. « Asymmetry-induced effects in Kondo quantum dots coupled to ferromagnetic leads ». Journal of Physics : Condensed Matter 25, no 7 (17 janvier 2013) : 075301. http://dx.doi.org/10.1088/0953-8984/25/7/075301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ebrahim, Sh, W. Ramadan et M. Ali. « Structural, optical and ferromagnetic properties of cobalt doped CdTe quantum dots ». Journal of Materials Science : Materials in Electronics 27, no 4 (19 décembre 2015) : 3826–33. http://dx.doi.org/10.1007/s10854-015-4229-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ma, Xiying, et Caoxin Lou. « The ferromagnetic properties of Ge magnetic quantum dots doped with Mn ». Applied Surface Science 258, no 7 (janvier 2012) : 2906–9. http://dx.doi.org/10.1016/j.apsusc.2011.11.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Li, Junyao, Xiaofeng Liu, Lingyun Wan, Xinming Qin, Wei Hu et Jinlong Yang. « Mixed magnetic edge states in graphene quantum dots ». Multifunctional Materials 5, no 1 (10 janvier 2022) : 014001. http://dx.doi.org/10.1088/2399-7532/ac44fe.

Texte intégral
Résumé :
Abstract Graphene quantum dots (GQDs) exhibit abundant magnetic edge states with promising applications in spintronics. Hexagonal zigzag GQDs possess a ground state with an antiferromagnetic (AFM) inter-edge coupling, followed by a metastable state with ferromagnetic (FM) inter-edge coupling. By analyzing the Hubbard model and performing large-scale spin-polarized density functional theory calculations containing thousands of atoms, we predict a series of new mixed magnetic edge states of GQDs arising from the size effect, namely mix-n, where n is the number of spin arrangement parts at each edge, with parallel spin in the same part and anti-parallel spin between adjacent parts. In particular, we demonstrate that the mix-2 state of bare GQDs (C 6 N 2 ) appears when N ⩾ 4 and the mix-3 state appears when N ⩾ 6 , where N is the number of six-membered-ring at each edge, while the mix-2 and mix-3 magnetic states appear in the hydrogenated GQDs with N = 13 and N = 15, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Świrkowicz, R., W. Rudziński, M. Wilczyński, M. Wawrzyniak et J. Barnaś. « Kondo effect in quantum dots coupled to ferromagnetic leads with noncollinear magnetizations ». Physica B : Condensed Matter 378-380 (mai 2006) : 940–41. http://dx.doi.org/10.1016/j.physb.2006.01.358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ponnar, M., K. Pushpanathan, R. Santhi et S. Ravichandran. « Enhanced supercapacitor performance and ferromagnetic behavior of Ni-doped CeO2 quantum dots ». Journal of Materials Science : Materials in Electronics 31, no 15 (28 juin 2020) : 12661–77. http://dx.doi.org/10.1007/s10854-020-03816-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Tao, Hou, Wu Shao-Quan, Bi Ai-Hua, Yang Fu-Bin et Sun Wei-Li. « Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads ». Chinese Physics Letters 25, no 6 (29 mai 2008) : 2198–201. http://dx.doi.org/10.1088/0256-307x/25/6/075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ai-Hua, Bi, Wu Shao-Quan, Hou Tao et Sun Wei-Li. « Fano–Kondo Effect in a Triple Quantum Dots Coupled to Ferromagnetic Leads ». Chinese Physics Letters 25, no 8 (29 juillet 2008) : 3028–31. http://dx.doi.org/10.1088/0256-307x/25/8/079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Fransson, J. « Angular conductance resonances of quantum dots non-collinearly coupled to ferromagnetic leads ». Europhysics Letters (EPL) 70, no 6 (juin 2005) : 796–802. http://dx.doi.org/10.1209/epl/i2005-10043-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wrześniewski, K., et I. Weymann. « Current Suppression in Transport Through Triple Quantum Dots Coupled to Ferromagnetic Leads ». Acta Physica Polonica A 127, no 2 (février 2015) : 460–62. http://dx.doi.org/10.12693/aphyspola.127.460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Duan, Xiaoxiao, Shuming Ye, Jing Yang, Chen Li, Chunjiang Lu, Xinpeng He, Luran Zhang et al. « High Curie Temperature Achieved in the Ferromagnetic MnxGe1−x/Si Quantum Dots Grown by Ion Beam Co-Sputtering ». Nanomaterials 12, no 4 (21 février 2022) : 716. http://dx.doi.org/10.3390/nano12040716.

Texte intégral
Résumé :
Ferromagnetic semiconductors (FMSs) exhibit great potential in spintronic applications. It is believed that a revolution of microelectronic techniques can take off, once the challenges of FMSs in both the room-temperature stability of the ferromagnetic phase and the compatibility with Si-based technology are overcome. In this article, the MnxGe1−x/Si quantum dots (QDs) with the Curie temperature (TC) higher than the room temperature were grown by ion beam co-sputtering (IBCS). With the Mn doping level increasing, the ripening growth of MnGe QDs occurs due to self-assembly via the Stranski–Krastanov (SK) growth mode. The surface-enhanced Raman scattering effect of Mn sites observed in MnGe QDs are used to reveal the distribution behavior of Mn atoms in QDs and the Si buffer layer. The Curie temperature of MnxGe1−x QDs increases, then slightly decreases with increasing the Mn doping level, and reaches its maximum value of 321 K at the doping level of 0.068. After a low-temperature and short-time annealing, the TC value of Mn0.068Ge0.932 QDs increases from 321 K to 383 K. The higher Ge composition and residual strain in the IBCS grown MnxGe1−x QDs are proposed to be responsible for maintaining the ferromagnetic phase above room temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Najdi, M. A. « The Charge and Spin Thermoelectric Properties across Double Quantum Dots Serially Coupled to Ferromagnetic Leads : The Case of Parallel Magnetic Configuration ». BASRA JOURNAL OF SCIENCE 40, no 1 (3 juin 2022) : 107–27. http://dx.doi.org/10.29072/basjs.20220106.

Texte intégral
Résumé :
In this article, the charge and spin thermoelectric properties of double quantum dots system connected to ferromagnetic leads with collinear magnetic configurations will be studied in the linear response regime. Our results are calculated in a strong interdot coupling regime by taking into consideration all parameters affecting the system such as interaction between dots and their coupling to the leads, intradot Coulomb correlation energy and spin-polarization on the leads. It is found that in the parallel magnetic configuration, the thermoelectric efficiency can reach a large value around the spin-down resonance levels when the tunneling coupling between the quantum dots and the leads for the spin-down electrons are small, which leads to the pure spin Seebeck contribution. As a result, this system can generate a spin-polarized current. The value of the spin figure of merit is enhanced by increasing the spin-polarization and decreasing the correlation energy.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Najdi, M. A., J. M. AL-Mukh et H. A. Jassem. « Theoretical Investigation in Coherent Manipulation throughout the Calculation of the Local Density of States in FM-DQD-FM Device ». Materials Science Forum 1039 (20 juillet 2021) : 451–69. http://dx.doi.org/10.4028/www.scientific.net/msf.1039.451.

Texte intégral
Résumé :
In this work, theoretical investigation in coherent manipulation throughout local density of states calculation for serially coupled double quantum dots embedded between ferromagnetic leads (FM-QD1-QD2-FM) by using the non-equilibrium Green's function approach. Since the local density of states are formulated incorporating the spin polarization and the type of spin configuration on the leads. Our model incorporates the inter-dot hopping, the intra-dot Coulomb correlation, the spin exchange energy and the coupling interactions between the quantum dots and leads. The results concerned to the parallel configuration at strong inter-dot coupling regime shows that the spin down electrons in the quantum dots may be more coupled coherently if the regime is tuned. The local density of states of the two dots for spin up electrons shows a broad hump with small splitting i.e. the case is decoherent for spin up electrons. In the case of weak interdot coupling it is obvious that the spin dependent density of states on the quantum dots show that the resonances are not well splitted. For the antiparallel configuration in the strong coupling regime, the spin dependent density of states of the double quantum dots show four peaks but with broaden and overlapping. In the case of weak coupling regime, the total spin dependent density of states, which have two peaks with certain board, one can conclude that the states are not coupled coherently. The case of the antiferromagnetic nature of the spin exchange interaction, our calculations for the parallel and antiparallel configurations (in strong and weak regimes) show a decoherence state.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Nazar, Laith, et T. A. Salman. « Tunneling magnetoresistance calculation for double quantum dot connected in parallel shape to ferromagnetic Leads ». Journal of Kufa-Physics 15, no 01 (28 juin 2023) : 69–76. http://dx.doi.org/10.31257/2018/jkp/2023/v15.i01.11428.

Texte intégral
Résumé :
In this paper, a theoretical model for electron transport through symmetric system consisting of two baths interferometer with one single-level quantum dot in each of its arms was considered. In this model, the dots are attached to ferromagnetic leads with parallel and antiparallel magnetic configurations. Green's function technique in this model was used. Our focus is on the Transport characteristics of conductance (G) and tunnel magnetoresistance (TMR). A special attention to the influence of an applied magnetics flux on the characteristics of conductance and tunneling magnetoresistance was paid. Concerning the study of the conductance, it was found that the effect of bonding (antibonding) states is most obvious in quantum dots at various values of the magnetic field. The change in spin-polarization value was seen to affect the increase and decrease in the conductance value. We noticed a difference in calculation of TMR in the bonding and the antibonding states, where the results show Strong dissonance in bonding state and strong attraction in antibonding state.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Sadowski, J., J. Kanski, M. Adell, J. Z. Domagała, E. Janik, E. Łusakowska, R. Brucas et M. Hanson. « Solid Phase Epitaxy of Ferromagnetic MnAs Layer and Quantum Dots on Annealed GaMnAs ». Acta Physica Polonica A 108, no 5 (novembre 2005) : 851–58. http://dx.doi.org/10.12693/aphyspola.108.851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yu, Hui, Ting-Dun Wen, J. Q. Liang et Q. F. Sun. « Phonon-assisted Kondo effect in single-molecule quantum dots coupled to ferromagnetic leads ». Physics Letters A 372, no 46 (novembre 2008) : 6944–51. http://dx.doi.org/10.1016/j.physleta.2008.10.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie