Articles de revues sur le sujet « Family symmetry »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Family symmetry.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Family symmetry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Frampton, Paul H. « Family symmetry ». Pramana 45, S1 (octobre 1995) : 113–16. http://dx.doi.org/10.1007/bf02907969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shafaq, Saba, et Mariam Saleh Khan. « Left right symmetric model with additional family symmetry ». Physics Essays 30, no 2 (13 juin 2017) : 161–67. http://dx.doi.org/10.4006/0836-1398-30.2.161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Elwood, John K., Nikolaos Irges et Pierre Ramond. « Family Symmetry and Neutrino Mixing ». Physical Review Letters 81, no 23 (7 décembre 1998) : 5064–67. http://dx.doi.org/10.1103/physrevlett.81.5064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Grinstein, Benjamin, John Preskill et Mark B. Wise. « Neutrino masses and family symmetry ». Physics Letters B 159, no 1 (septembre 1985) : 57–61. http://dx.doi.org/10.1016/0370-2693(85)90119-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chang, Darwin, Palash B. Pal et Goran Senjanović. « Axions from chiral family symmetry ». Physics Letters B 153, no 6 (avril 1985) : 407–11. http://dx.doi.org/10.1016/0370-2693(85)90482-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Babu, K. S., et Sandip Pakvasa. « Neutrino masses and family symmetry ». Physics Letters B 172, no 3-4 (mai 1986) : 360–62. http://dx.doi.org/10.1016/0370-2693(86)90270-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

KAJIYAMA, YUJI. « R-Parity Violation and Family Symmetry ». International Journal of Modern Physics A 22, no 31 (20 décembre 2007) : 5909–19. http://dx.doi.org/10.1142/s0217751x07039110.

Texte intégral
Résumé :
In this talk, we investigate the implications of R-parity violating (RPV) operators in a model with family symmetry 1. Family symmetry can determine the form of RPV operators as well as the Yukawa matrices. We consider a concrete model with non-abelian discrete symmetry Q6, which has only three RPV trilinear operators with no baryon number violating terms. We find that ratios of decay rates of the lepton flavor violating processes are fixed thanks to the family symmetry, predicting [Formula: see text].
Styles APA, Harvard, Vancouver, ISO, etc.
8

CHENG, K. H. F., R. K. GUY, R. SCHEIDLER et H. C. WILLIAMS. « CLASSIFICATION AND SYMMETRIES OF A FAMILY OF CONTINUED FRACTIONS WITH BOUNDED PERIOD LENGTH ». Journal of the Australian Mathematical Society 93, no 1-2 (octobre 2012) : 53–76. http://dx.doi.org/10.1017/s1446788712000602.

Texte intégral
Résumé :
AbstractIt is well known that the regular continued fraction expansion of a quadratic irrational is symmetric about its centre; we refer to this symmetry as horizontal. However, an additional vertical symmetry is exhibited by the continued fraction expansions arising from a family of quadratics known as Schinzel sleepers. This paper provides a method for generating every Schinzel sleeper and investigates their period lengths as well as both their horizontal and vertical symmetries.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ramage, Michael R., et Graham G. Ross. « Soft SUSY breaking and family symmetry ». Journal of High Energy Physics 2005, no 08 (8 août 2005) : 031. http://dx.doi.org/10.1088/1126-6708/2005/08/031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

King, Stephen F., et Christoph Luhn. « A new family symmetry for GUTs ». Nuclear Physics B 820, no 1-2 (octobre 2009) : 269–89. http://dx.doi.org/10.1016/j.nuclphysb.2009.05.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

WU, YUE-LIANG. « MAXIMALLY SYMMETRIC MINIMAL UNIFICATION MODEL SO(32) WITH THREE FAMILIES IN TEN-DIMENSIONAL SPACETIME ». Modern Physics Letters A 22, no 04 (10 février 2007) : 259–71. http://dx.doi.org/10.1142/s0217732307022591.

Texte intégral
Résumé :
Based on a maximally symmetric minimal unification hypothesis and a quantum charge-dimension correspondence principle, it is demonstrated that each family of quarks and leptons belongs to the Majorana–Weyl spinor representation of 14 dimensions that relate to quantum spin-isospin-color charges. Families of quarks and leptons attribute to a spinor structure of extra six dimensions that relate to quantum family charges. Of particular, it is shown that ten dimensions relating to quantum spin-family charges form a motional ten-dimensional quantum spacetime with a generalized Lorentz symmetry SO (1, 9), and ten dimensions relating to quantum isospin-color charges become a motionless ten-dimensional quantum intrinsic space. Its corresponding 32-component fermions in the spinor representation possess a maximal gauge symmetry SO (32). As a consequence, a maximally symmetric minimal unification model SO (32) containing three families in ten-dimensional quantum spacetime is naturally obtained by choosing a suitable Majorana–Weyl spinor structure into which quarks and leptons are directly embedded. Both resulting symmetry and dimensions coincide with those of type I string and heterotic string SO (32) in string theory.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bruce, J. W., P. J. Giblin et C. G. Gibson. « Symmetry sets ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 101, no 1-2 (1985) : 163–86. http://dx.doi.org/10.1017/s0308210500026263.

Texte intégral
Résumé :
SynopsisFor a smooth manifold M ⊆ ℝn, the symmetry set S(M) is defined to be the closure of the set of points u∈ℝn which are centres of spheres tangent to M at two or more distinct points. (The idea has its origin in the theory of shape recognition.) The connexion with singularities is that S(M) can be described alternatively as the levels bifurcation set of the family of distance-squared functions on M. In this paper a multi-germ version of the standard uniqueness result for versal unfoldings of potential functions is used to obtain a complete list of local normal forms (up to diffeomorphism) for the symmetry sets of generic plane curves, generic space curves, and generic surfaces in 3-space. For these cases the authors verify that M can be recovered as the envelope of a family of spheres centred at smooth points of S(M).
Styles APA, Harvard, Vancouver, ISO, etc.
13

BAGCHI, B., S. MALLIK et C. QUESNE. « PT-SYMMETRIC SQUARE WELL AND THE ASSOCIATED SUSY HIERARCHIES ». Modern Physics Letters A 17, no 25 (20 août 2002) : 1651–64. http://dx.doi.org/10.1142/s0217732302008009.

Texte intégral
Résumé :
The PT-symmetric square well problem is considered in a SUSY framework. When the coupling strength Z lies below the critical value [Formula: see text] where PT symmetry becomes spontaneously broken, we find a hierarchy of SUSY partner potentials, depicting an unbroken SUSY situation and reducing to the family of sec 2-like potentials in the Z → 0 limit. For Z above [Formula: see text], there is a rich diversity of SUSY hierarchies, including some with PT-symmetry breaking and some with partial PT-symmetry restoration.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Dziewit, Bartosz, Jacek Holeczek, Sebastian Zając et Marek Zrałek. « Family Symmetries and Multi Higgs Doublet Models ». Symmetry 12, no 1 (12 janvier 2020) : 156. http://dx.doi.org/10.3390/sym12010156.

Texte intégral
Résumé :
Imposing a family symmetry on the Standard Model in order to reduce the number of its free parameters, due to the Schur’s Lemma, requires an explicit breaking of this symmetry. To avoid the need for this symmetry to break, additional Higgs doublets can be introduced. In such an extension of the Standard Model, we investigate family symmetries of the Yukawa Lagrangian. We find that adding a second Higgs doublet (2HDM) does not help, at least for finite subgroups of the U ( 3 ) group up to the order of 1025.
Styles APA, Harvard, Vancouver, ISO, etc.
15

May, Coy L. « A Family of M*-Groups ». Canadian Journal of Mathematics 38, no 5 (1 octobre 1986) : 1094–109. http://dx.doi.org/10.4153/cjm-1986-054-8.

Texte intégral
Résumé :
A compact bordered Klein surface of (algebraic) genus g ≦ 2 is said to have maximal symmetry [5] if its automorphism group is of order 12(g – 1), the largest possible. An M*-group acts as the automorphism group of a bordered surface with maximal symmetry. M*-groups were first studied in [6], and additional results about these groups are in [5, 7, 8].Here we construct a new, interesting family of M*-groups. Each group G in the family is an extension of a cyclic group by the automorphism group of a torus T with holes that has maximal symmetry. Furthermore, G acts on a bordered Klein surface X that is a fully wound covering [7] of T, that is, an especially nice covering in which X has the same number of boundary components as T. The construction we use for the new family of M*-groups is a standard one that employs group automorphisms to define extensions of groups.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhang Feng, Zhang Chun-Xu et Huang Ming-Qiu. « Neutrino masses in the left-right symmetry model with a family symmetry ». Acta Physica Sinica 59, no 5 (2010) : 3130. http://dx.doi.org/10.7498/aps.59.3130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yang, Wei-Min, et Hong-Huan Liu. « The new extended left–right symmetric grand unified model with family symmetry ». Nuclear Physics B 820, no 1-2 (octobre 2009) : 364–84. http://dx.doi.org/10.1016/j.nuclphysb.2009.05.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

SAWANAKA, HIDEYUKI. « QUARK AND LEPTON MASS MATRICES WITH A4 FAMILY SYMMETRY ». International Journal of Modern Physics E 16, no 05 (juin 2007) : 1383–93. http://dx.doi.org/10.1142/s0218301307006745.

Texte intégral
Résumé :
Realistic quark masses and mixing angles are obtained applying the successful A4 family symmetry for leptons, motivated by the quark-lepton assignments of SU (5). The A4 symmetry is suitable to give tri-bimaximal neutrino mixing matrix which is consistent with current experimental data. We study new scenario for the quark sector with the A4 symmetry.
Styles APA, Harvard, Vancouver, ISO, etc.
19

MA, ERNEST. « LEPTON FAMILY SYMMETRY AND NEUTRINO MASS MATRIX ». Modern Physics Letters A 19, no 08 (14 mars 2004) : 577–82. http://dx.doi.org/10.1142/s0217732304013374.

Texte intégral
Résumé :
The standard model of leptons is extended to accommodate a discrete Z3×Z2 family symmetry. After rotating the charged-lepton mass matrix to its diagonal form, the neutrino mass matrix reveals itself as very suitable for explaining atmospheric and solar neutrino oscillation data. A generic requirement of this approach is the appearance of three Higgs doublets at the electroweak scale, with observable flavor violating decays.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ishimori, Hajime, Stephen F. King, Hiroshi Okada et Morimitsu Tanimoto. « Quark mixing from Δ(6N2) family symmetry ». Physics Letters B 743 (avril 2015) : 172–79. http://dx.doi.org/10.1016/j.physletb.2015.02.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Allanach, B. C., S. F. King, G. K. Leontaris et S. Lola. « Yukawa textures from family symmetry and unification ». Physics Letters B 407, no 3-4 (septembre 1997) : 275–82. http://dx.doi.org/10.1016/s0370-2693(97)00733-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sumino, Yukinari. « Family gauge symmetry and Koide's mass formula ». Physics Letters B 671, no 4-5 (février 2009) : 477–80. http://dx.doi.org/10.1016/j.physletb.2008.12.060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Chen, Shao-Long, Michele Frigerio et Ernest Ma. « Hybrid seesaw neutrino masses with family symmetry ». Nuclear Physics B 724, no 1-2 (septembre 2005) : 423–31. http://dx.doi.org/10.1016/j.nuclphysb.2005.07.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Evans, N. J., S. F. King et D. A. Ross. « Top quark condensation from broken family symmetry ». Zeitschrift für Physik C Particles and Fields 60, no 3 (septembre 1993) : 509–17. http://dx.doi.org/10.1007/bf01560049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Tao, Zhijian. « Spontaneous family symmetry breaking and fermion mixing ». Physics Letters B 355, no 3-4 (août 1995) : 518–22. http://dx.doi.org/10.1016/0370-2693(95)00742-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

King, Stephen F., et Michal Malinský. « A4 family symmetry and quark–lepton unification ». Physics Letters B 645, no 4 (février 2007) : 351–57. http://dx.doi.org/10.1016/j.physletb.2006.12.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Heatherington, Laurie, et Myrna L. Friedlander. « Complementarity and symmetry in family therapy communication. » Journal of Counseling Psychology 37, no 3 (juillet 1990) : 261–68. http://dx.doi.org/10.1037/0022-0167.37.3.261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

DU, DONGSHENG, et CHUN LIU. « CYCLIC FAMILY SYMMETRY AND LEPTON HIERARCHY IN SUPERSYMMETRY ». Modern Physics Letters A 10, no 25 (20 août 1995) : 1837–41. http://dx.doi.org/10.1142/s0217732395001976.

Texte intégral
Résumé :
A cyclic symmetry among the left-handed doublets of the three families is proposed. This symmetry can naturally result in a realistic hierarchical pattern of the fermion masses within the framework of supersymmetry with nonvanishing sneutrino vacuum expectation values.
Styles APA, Harvard, Vancouver, ISO, etc.
29

MA, ERNEST. « HIDING THE EXISTENCE OF A FAMILY SYMMETRY IN THE STANDARD MODEL ». Modern Physics Letters A 20, no 36 (30 novembre 2005) : 2767–74. http://dx.doi.org/10.1142/s0217732305018815.

Texte intégral
Résumé :
If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
30

MA, ERNEST. « A4 SYMMETRY AND NEUTRINOS ». International Journal of Modern Physics A 23, no 21 (20 août 2008) : 3366–70. http://dx.doi.org/10.1142/s0217751x08042134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sawada, Tadamasa, Yunfeng Li et Zygmunt Pizlo. « Any Pair of 2D Curves Is Consistent with a 3D Symmetric Interpretation ». Symmetry 3, no 2 (10 juin 2011) : 365–88. http://dx.doi.org/10.3390/sym3020365.

Texte intégral
Résumé :
Symmetry has been shown to be a very effective a priori constraint in solving a 3D shape recovery problem. Symmetry is useful in 3D recovery because it is a form of redundancy. There are, however, some fundamental limits to the effectiveness of symmetry. Specifically, given two arbitrary curves in a single 2D image, one can always find a 3D mirror-symmetric interpretation of these curves under quite general assumptions. The symmetric interpretation is unique under a perspective projection and there is a one parameter family of symmetric interpretations under an orthographic projection. We formally state and prove this observation for the case of one-to-one and many-to-many point correspondences. We conclude by discussing the role of degenerate views, higher-order features in determining the point correspondences, as well as the role of the planarity constraint. When the correspondence of features is known and/or curves can be assumed to be planar, 3D symmetry becomes non-accidental in the sense that a 2D image of a 3D asymmetric shape obtained from a random viewing direction will not allow for 3D symmetric interpretations.
Styles APA, Harvard, Vancouver, ISO, etc.
32

MA, ERNEST. « TETRAHEDRAL FAMILY SYMMETRY AND THE NEUTRINO MIXING MATRIX ». Modern Physics Letters A 20, no 34 (10 novembre 2005) : 2601–5. http://dx.doi.org/10.1142/s0217732305018736.

Texte intégral
Résumé :
In a new application of the discrete non-Abelian symmetry A4 using the canonical seesaw mechanism, a three-parameter form of the neutrino mass matrix is derived. It predicts the following mixing angles for neutrino oscillations: θ13=0, sin 2θ23=1/2, and sin 2θ12 close, but not exactly equal to 1/3, in one natural symmetry limit.
Styles APA, Harvard, Vancouver, ISO, etc.
33

KONG, OTTO C. W. « A NEW APPROACH TO THE FAMILY STRUCTURE ». Modern Physics Letters A 11, no 31 (10 octobre 1996) : 2547–54. http://dx.doi.org/10.1142/s0217732396002551.

Texte intégral
Résumé :
In this letter, we introduce a new approach to formulate the family structure of the standard model. Trying to mimic the highly constrained representation structure of the standard model while extending the symmetry, we propose an SU (4) ⊗ SU (3) ⊗ SU (2) ⊗ U (1) symmetry with a SM-like chiral spectra basically “derived” from the gauge anomaly constraints. Embedding the SM leads to SU (4)A ⊗ SU (3)C ⊗ SU (2)L ⊗ U (1)X models, which upon the SU (4)A ⊗ U (1)Y symmetry breaking, gives the three families naturally as a result. A specific model obtained from the approach is illustrated. The model, or others from our approach, holds promise of a very interesting phenomenology. We sketch some of the results here. An interesting possibility of supersymmetrizing the model with the EW-Higgses already in the spectrum is noted. A comparison with other approaches is also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Swamy, Sondekola Rudra, et Luminiţa-Ioana Cotîrlă. « On τ-Pseudo-ν-Convex κ-Fold Symmetric Bi-Univalent Function Family ». Symmetry 14, no 10 (21 septembre 2022) : 1972. http://dx.doi.org/10.3390/sym14101972.

Texte intégral
Résumé :
The object of this article is to explore a τ-pseudo-ν-convex κ-fold symmetric bi-univalent function family satisfying subordinations condition generalizing certain previously examined families. We originate the initial Taylor–Maclaurin coefficient estimates of functions in the defined family. The classical Fekete–Szegö inequalities for functions in the defined τ-pseudo-ν-convex family is also estimated. Furthermore, we present some of the special cases of the main results. Relevant connections with those in several earlier works are also pointed out. Our study in this paper is also motivated by the symmetry nature of κ-fold symmetric bi-univalent functions in the defined class.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Ding, Gui-Jun, Jun-Nan Lu et José W. F. Valle. « Trimaximal neutrino mixing from scotogenic A4 family symmetry ». Physics Letters B 815 (avril 2021) : 136122. http://dx.doi.org/10.1016/j.physletb.2021.136122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lampe, Bodo. « Tetrahedral symmetry—an approach to the family problem ». Journal of Physics G : Nuclear and Particle Physics 34, no 9 (31 juillet 2007) : 1927–33. http://dx.doi.org/10.1088/0954-3899/34/9/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Crass, S. « A family of critically finite maps with symmetry ». Publicacions Matemàtiques 49 (1 janvier 2005) : 127–57. http://dx.doi.org/10.5565/publmat_49105_06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ma, Ernest. « Lepton Family Symmetry and the Neutrino Mixing Matrix ». Journal of Physics : Conference Series 53 (1 novembre 2006) : 451–57. http://dx.doi.org/10.1088/1742-6596/53/1/028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ma, E. « New lepton family symmetry and neutrino tribimaximal mixing ». Europhysics Letters (EPL) 79, no 6 (7 août 2007) : 61001. http://dx.doi.org/10.1209/0295-5075/79/61001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

King, Stephen F., Thomas Neder et Alexander J. Stuart. « Lepton mixing predictions from Δ(6n2) family symmetry ». Physics Letters B 726, no 1-3 (octobre 2013) : 312–15. http://dx.doi.org/10.1016/j.physletb.2013.08.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Binétruy, Pierre, Stéphane Lavignac, Serguey Petcov et Pierre Ramond. « Quasi-degenerate neutrinos from an Abelian family symmetry ». Nuclear Physics B 496, no 1-2 (juillet 1997) : 3–23. http://dx.doi.org/10.1016/s0550-3213(97)00211-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

de Medeiros Varzielas, Ivo, et Graham G. Ross. « family symmetry and neutrino bi-tri-maximal mixing ». Nuclear Physics B 733, no 1-2 (janvier 2006) : 31–47. http://dx.doi.org/10.1016/j.nuclphysb.2005.10.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Cooper, Iain K., Stephen F. King et Christoph Luhn. « Renormalisation group improved leptogenesis in family symmetry models ». Nuclear Physics B 859, no 2 (juin 2012) : 159–76. http://dx.doi.org/10.1016/j.nuclphysb.2012.02.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ponce, William A., Arnulfo Zepeda et Jesús M. Mira. « Is U(1) H a good family symmetry ? » Zeitschrift f�r Physik C Particles and Fields 69, no 4 (15 février 1996) : 683–86. http://dx.doi.org/10.1007/s002880050072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Joyce, Michael, et Neil Turok. « Family symmetry, fermion mass matrices and cosmic texture ». Nuclear Physics B 416, no 2 (mars 1994) : 389–413. http://dx.doi.org/10.1016/0550-3213(94)90320-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ma, Ernest, Hideyuki Sawanaka et Morimitsu Tanimoto. « Quark masses and mixing with A4 family symmetry ». Physics Letters B 641, no 3-4 (octobre 2006) : 301–4. http://dx.doi.org/10.1016/j.physletb.2006.08.062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Hanlon, B. E., et G. C. Joshi. « A noncommutative geometric model with horizontal family symmetry ». Journal of Mathematical Physics 36, no 3 (mars 1995) : 1111–22. http://dx.doi.org/10.1063/1.531108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Koide, Yoshio, et Sadao Oneda. « Lepton masses and SU(3)family-symmetry breaking ». Physical Review D 36, no 9 (1 novembre 1987) : 2867–70. http://dx.doi.org/10.1103/physrevd.36.2867.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Babu, K. S., et S. M. Barr. « Family symmetry, gravity, and the strong CP problem ». Physics Letters B 300, no 4 (février 1993) : 367–72. http://dx.doi.org/10.1016/0370-2693(93)91347-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ponce, William A., Arnulfo Zepeda et Jesús M. Mira. « Is U(1) H a good family symmetry ? » Zeitschrift für Physik C : Particles and Fields 69, no 1 (décembre 1995) : 683–86. http://dx.doi.org/10.1007/bf02907452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie