Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Extremal self-dual codes.

Articles de revues sur le sujet « Extremal self-dual codes »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Extremal self-dual codes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Dougherty, S. T., T. A. Gulliver et M. Harada. « Extremal binary self-dual codes ». IEEE Transactions on Information Theory 43, no 6 (1997) : 2036–47. http://dx.doi.org/10.1109/18.641574.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dontcheva, R., et M. Harada. « New extremal self-dual codes of length 62 and related extremal self-dual codes ». IEEE Transactions on Information Theory 48, no 7 (juillet 2002) : 2060–64. http://dx.doi.org/10.1109/tit.2002.1013144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bouyuklieva, Stefka, Anton Malevich et Wolfgang Willems. « Automorphisms of Extremal Self-Dual Codes ». IEEE Transactions on Information Theory 56, no 5 (mai 2010) : 2091–96. http://dx.doi.org/10.1109/tit.2010.2043763.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Han, Sun-Ghyu, et June-Bok Lee. « NONEXISTENCE OF SOME EXTREMAL SELF-DUAL CODES ». Journal of the Korean Mathematical Society 43, no 6 (1 novembre 2006) : 1357–69. http://dx.doi.org/10.4134/jkms.2006.43.6.1357.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tsai, H. P. « Existence of certain extremal self-dual codes ». IEEE Transactions on Information Theory 38, no 2 (mars 1992) : 501–4. http://dx.doi.org/10.1109/18.119711.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Han-Ping Tsai. « Existence of some extremal self-dual codes ». IEEE Transactions on Information Theory 38, no 6 (1992) : 1829–33. http://dx.doi.org/10.1109/18.165461.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Han-Ping Tsai et Yih-Jaw Jiang. « Some new extremal self-dual [58,29,10] codes ». IEEE Transactions on Information Theory 44, no 2 (mars 1998) : 813–14. http://dx.doi.org/10.1109/18.661527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gulliver, T. Aaron, Masaaki Harada et Jon-Lark Kim. « Construction of new extremal self-dual codes ». Discrete Mathematics 263, no 1-3 (février 2003) : 81–91. http://dx.doi.org/10.1016/s0012-365x(02)00570-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Koch, Helmut. « On self-dual doubly-even extremal codes ». Discrete Mathematics 83, no 2-3 (août 1990) : 291–300. http://dx.doi.org/10.1016/0012-365x(90)90013-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Spence, Edward, et Vladimir D. Tonchev. « Extremal self-dual codes from symmetric designs ». Discrete Mathematics 110, no 1-3 (décembre 1992) : 265–68. http://dx.doi.org/10.1016/0012-365x(92)90716-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Han, Sunghyu. « Near-Extremal Type I Self-Dual Codes with Minimal Shadow over GF(2) and GF(4) ». Information 9, no 7 (13 juillet 2018) : 172. http://dx.doi.org/10.3390/info9070172.

Texte intégral
Résumé :
Binary self-dual codes and additive self-dual codes over GF(4) contain common points. Both have Type I codes and Type II codes, as well as shadow codes. In this paper, we provide a comprehensive description of extremal and near-extremal Type I codes over GF(2) and GF(4) with minimal shadow. In particular, we prove that there is no near-extremal Type I [24m,12m,2m+2] binary self-dual code with minimal shadow if m≥323, and we prove that there is no near-extremal Type I (6m+1,26m+1,2m+1) additive self-dual code over GF(4) with minimal shadow if m≥22.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Karadeniz, Suat, Bahattin Yildiz et Nuh Aydin. « Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over F2+uF2 ». Filomat 28, no 5 (2014) : 937–45. http://dx.doi.org/10.2298/fil1405937k.

Texte intégral
Résumé :
A classification of all four-circulant extremal codes of length 32 over F2 + uF2 is done by using four-circulant binary self-dual codes of length 32 of minimum weights 6 and 8. As Gray images of these codes, a substantial number of extremal binary self-dual codes of length 64 are obtained. In particular a new code with ?=80 in W64,2 is found. Then applying an extension method from the literature to extremal self-dual codes of length 64, we have found many extremal binary self-dual codes of length 66. Among those, five of them are new codes in the sense that codes with these weight enumerators are constructed for the first time. These codes have the values ?=1, 30, 34, 84, 94 in W66,1.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Guan, Chaofeng, Ruihu Li, Hao Song, Liangdong Lu et Husheng Li. « Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes ». AIMS Mathematics 7, no 4 (2022) : 6516–34. http://dx.doi.org/10.3934/math.2022363.

Texte intégral
Résumé :
<abstract><p>In this paper, we consider $ S $-chains of extremal self-dual and self-orthogonal codes and their applications in the construction of quantum codes. Then, by virtue of covering radius, we determine necessary conditions for linear codes to have subcodes with large dual distances and design a new $ S $-chain search method. As computational results, 18 $ S $-chains with large distances are obtained, and many good quantum codes can be derived from those $ S $-chains by Steane construction, some of which improve the previous results.</p></abstract>
Styles APA, Harvard, Vancouver, ISO, etc.
14

GABORIT, PHILIPPE, ANN MARIE NATIVIDAD et PATRICK SOLÉ. « EISENSTEIN LATTICES, GALOIS RINGS AND QUATERNARY CODES ». International Journal of Number Theory 02, no 02 (juin 2006) : 289–303. http://dx.doi.org/10.1142/s1793042106000577.

Texte intégral
Résumé :
Self-dual codes over the Galois ring GR(4,2) are investigated. Of special interest are quadratic double circulant codes. Euclidean self-dual (Type II) codes yield self-dual (Type II) ℤ4-codes by projection on a trace orthogonal basis. Hermitian self-dual codes also give self-dual ℤ4-codes by the cubic construction, as well as Eisenstein lattices by Construction A. Applying a suitable Gray map to self-dual codes over the ring gives formally self-dual 𝔽4-codes, most notably in length 12 and 24. Extremal unimodular lattices in dimension 38, 42 and the first extremal 3-modular lattice in dimension 44 are constructed.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Borello, Martino, et Gabriele Nebe. « On involutions in extremal self-dual codes and the dual distance of semi self-dual codes ». Finite Fields and Their Applications 33 (mai 2015) : 80–89. http://dx.doi.org/10.1016/j.ffa.2014.11.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Varbanov, Zlatko. « Some new Results for Additive Self-Dual Codes over GF(4) ». Serdica Journal of Computing 1, no 2 (4 juillet 2007) : 213–27. http://dx.doi.org/10.55630/sjc.2007.1.213-227.

Texte intégral
Résumé :
Additive code C over GF(4) of length n is an additive subgroup of GF(4)n. It is well known [4] that the problem of finding stabilizer quantum error-correcting codes is transformed into problem of finding additive self-orthogonal codes over the Galois field GF(4) under a trace inner product. Our purpose is to construct good additive self-dual codes of length 13 ≤ n ≤ 21. In this paper we classify all extremal (optimal) codes of lengths 13 and 14, and we construct many extremal codes of lengths 15 and 16. Also, we construct some new extremal codes of lengths 17,18,19, and 21. We give the current status of known extremal (optimal) additive self-dual codes of lengths 13 to 21.
Styles APA, Harvard, Vancouver, ISO, etc.
17

BETSUMIYA, Koichi, T. Aaron GULLIVER et Masaaki HARADA. « ON BINARY EXTREMAL FORMALLY SELF-DUAL EVEN CODES ». Kyushu Journal of Mathematics 53, no 2 (1999) : 421–30. http://dx.doi.org/10.2206/kyushujm.53.421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Dougherty, S. T., et M. Harada. « New extremal self-dual codes of length 68 ». IEEE Transactions on Information Theory 45, no 6 (1999) : 2133–36. http://dx.doi.org/10.1109/18.782158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

de la Cruz, Javier, et Wolfgang Willems. « On Extremal Self-Dual Codes of Length 96 ». IEEE Transactions on Information Theory 57, no 10 (octobre 2011) : 6820–23. http://dx.doi.org/10.1109/tit.2011.2155031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Shengyuan, Zhang. « On the nonexistence of extremal self-dual codes ». Discrete Applied Mathematics 91, no 1-3 (janvier 1999) : 277–86. http://dx.doi.org/10.1016/s0166-218x(98)00131-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

de la Cruz, Javier. « On extremal self-dual codes of length 120 ». Designs, Codes and Cryptography 75, no 2 (28 décembre 2013) : 243–52. http://dx.doi.org/10.1007/s10623-013-9902-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Harada, Masaaki. « Binary extremal self-dual codes of length 60 and related codes ». Designs, Codes and Cryptography 86, no 5 (24 juin 2017) : 1085–94. http://dx.doi.org/10.1007/s10623-017-0380-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Nebe, Gabriele. « On Extremal Self-Dual Ternary Codes of Length 48 ». International Journal of Combinatorics 2012 (23 janvier 2012) : 1–9. http://dx.doi.org/10.1155/2012/154281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Dougherty, Steven T., Joseph Gildea, Adrian Korban, Abidin Kaya, Alexander Tylyshchak et Bahattin Yildiz. « Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes ». Finite Fields and Their Applications 57 (mai 2019) : 108–27. http://dx.doi.org/10.1016/j.ffa.2019.02.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bouyuklieva, Stefka, Anton Malevich et Wolfgang Willems. « On the performance of binary extremal self-dual codes ». Advances in Mathematics of Communications 5, no 2 (mai 2011) : 267–74. http://dx.doi.org/10.3934/amc.2011.5.267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Georgiou, S., C. Koukouvinos et E. Lappas. « Extremal doubly-even self-dual codes from Hadamard matrices ». Journal of Discrete Mathematical Sciences and Cryptography 9, no 2 (août 2006) : 331–39. http://dx.doi.org/10.1080/09720529.2006.10698082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tonchev, V., et V. Y. Yorgov. « The existence of certain extremal [54,27,10] self-dual codes ». IEEE Transactions on Information Theory 42, no 5 (1996) : 1628–31. http://dx.doi.org/10.1109/18.532913.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Han-Ping Tsai. « Extremal self-dual codes of lengths 66 and 68 ». IEEE Transactions on Information Theory 45, no 6 (1999) : 2129–33. http://dx.doi.org/10.1109/18.782156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kaya, Abidin, et Bahattin Yildiz. « New extremal binary self-dual codes of length 68 ». Journal of Algebra Combinatorics Discrete Structures and Applications 1, no 1 (1 mars 2014) : 29. http://dx.doi.org/10.13069/jacodesmath.79879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Harada, Masaaki, W. Holzmann, H. Kharaghani et M. Khorvash. « Extremal Ternary Self-Dual Codes Constructed from Negacirculant Matrices ». Graphs and Combinatorics 23, no 4 (août 2007) : 401–17. http://dx.doi.org/10.1007/s00373-007-0731-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Harada, Masaaki, Akihiro Munemasa et Kenichiro Tanabe. « Extremal self-dual [40,20,8] codes with covering radius 7 ». Finite Fields and Their Applications 10, no 2 (avril 2004) : 183–97. http://dx.doi.org/10.1016/j.ffa.2003.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kim, Hyun Jin, et Yoonjin Lee. « Extremal quasi-cyclic self-dual codes over finite fields ». Finite Fields and Their Applications 52 (juillet 2018) : 301–18. http://dx.doi.org/10.1016/j.ffa.2018.04.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Han, Sunghyu, et Jon-Lark Kim. « The nonexistence of near-extremal formally self-dual codes ». Designs, Codes and Cryptography 51, no 1 (4 novembre 2008) : 69–77. http://dx.doi.org/10.1007/s10623-008-9244-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Harada, Masaaki, et Michio Ozeki. « Extremal self-dual codes with the smallest covering radius ». Discrete Mathematics 215, no 1-3 (mars 2000) : 271–81. http://dx.doi.org/10.1016/s0012-365x(99)00318-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Karadeniz, Suat, et Bahattin Yildiz. « New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes ». Advances in Mathematics of Communications 7, no 2 (2013) : 219–29. http://dx.doi.org/10.3934/amc.2013.7.219.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Karadeniz, Suat, et Bahattin Yildiz. « New extremal binary self-dual codes of length 66 as extensions of self-dual codes over Rk ». Journal of the Franklin Institute 350, no 8 (octobre 2013) : 1963–73. http://dx.doi.org/10.1016/j.jfranklin.2013.05.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Aguilar-Melchor, Carlos, Philippe Gaborit, Jon-Lark Kim, Lin Sok et Patrick Sole. « Classification of Extremal and $s$-Extremal Binary Self-Dual Codes of Length 38 ». IEEE Transactions on Information Theory 58, no 4 (avril 2012) : 2253–62. http://dx.doi.org/10.1109/tit.2011.2177809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Yorgova, Radinka, et Nuray At. « On Extremal Binary Doubly-Even Self-Dual Codes of Length 88* ». Serdica Journal of Computing 3, no 3 (3 novembre 2009) : 239–48. http://dx.doi.org/10.55630/sjc.2009.3.239-248.

Texte intégral
Résumé :
In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Harada, Masaaki, et Katsushi Waki. « New extremal formally self-dual even codes of length 30 ». Advances in Mathematics of Communications 3, no 4 (2009) : 311–16. http://dx.doi.org/10.3934/amc.2009.3.311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Harada, Masaaki. « Self-dual codes over F5 and s-extremal unimodular lattices ». Discrete Mathematics 346, no 1 (janvier 2023) : 113126. http://dx.doi.org/10.1016/j.disc.2022.113126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Buyuklieva, S. « New extremal self-dual codes of lengths 42 and 44 ». IEEE Transactions on Information Theory 43, no 5 (1997) : 1607–12. http://dx.doi.org/10.1109/18.623159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Buyuklieva, S., et N. Boukliev. « Extremal self-dual codes with an automorphism of order 2 ». IEEE Transactions on Information Theory 44, no 1 (1998) : 323–28. http://dx.doi.org/10.1109/18.651059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Harada, M. « New extremal self-dual codes of lengths 36 and 38 ». IEEE Transactions on Information Theory 45, no 7 (1999) : 2541–43. http://dx.doi.org/10.1109/18.796402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Harada, Masaaki, Michio Ozeki et Kenichiro Tanabe. « On the Covering Radius of Ternary Extremal Self-Dual Codes ». Designs, Codes and Cryptography 33, no 2 (septembre 2004) : 149–58. http://dx.doi.org/10.1023/b:desi.0000035468.86695.40.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Harada, Masaaki, Akihiro Munemasa et Boris Venkov. « Classification of ternary extremal self-dual codes of length 28 ». Mathematics of Computation 78, no 267 (1 septembre 2009) : 1787–96. http://dx.doi.org/10.1090/s0025-5718-08-02194-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Aguilar Melchor, Carlos, et Philippe Gaborit. « On the Classification of Extremal $[36,18,8]$ Binary Self-Dual Codes ». IEEE Transactions on Information Theory 54, no 10 (octobre 2008) : 4743–50. http://dx.doi.org/10.1109/tit.2008.928976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

T. Dougherty, Steven, Joe Gildea, Adrian Korban et Abidin Kaya. « Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68 ». Advances in Mathematics of Communications 14, no 4 (2020) : 677–702. http://dx.doi.org/10.3934/amc.2020037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Harada, Masaaki. « Extremal Type IIZ4-codes constructed from binary doubly even self-dual codes of length40 ». Discrete Mathematics 340, no 10 (octobre 2017) : 2466–68. http://dx.doi.org/10.1016/j.disc.2017.06.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Gildea, Joe, Abidin Kaya et Bahattin Yildiz. « An altered four circulant construction for self-dual codes from group rings and new extremal binary self-dual codes I ». Discrete Mathematics 342, no 12 (décembre 2019) : 111620. http://dx.doi.org/10.1016/j.disc.2019.111620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Harada, Masaaki, et Akihiro Munemasa. « On the covering radii of extremal doubly even self-dual codes ». Advances in Mathematics of Communications 1, no 2 (2007) : 251–56. http://dx.doi.org/10.3934/amc.2007.1.251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie