Articles de revues sur le sujet « Estimation de l'horizon mobile »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Estimation de l'horizon mobile.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Estimation de l'horizon mobile ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

THIVOLLE-CAZAT (Alain) et PIGNARD (Gérôme). « Estimation du volume de bois résineux disponible en France à l'horizon 2010 ». Revue Forestière Française, no 3-4 (2001) : 317. http://dx.doi.org/10.4267/2042/5243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kumar, Shailesh, et Anant R. Koppar. « Software Estimation Framework for Mobile Application Projects ». International Journal of Productivity Management and Assessment Technologies 7, no 2 (juillet 2019) : 26–40. http://dx.doi.org/10.4018/ijpmat.2019070102.

Texte intégral
Résumé :
As mobile devices are becoming the primary access channels for information, the authors need to have accurate effort estimation model for mobile application projects. In this paper the authors discuss “Mobile application estimation framework” that was designed based on 14 mobile application projects and was validated against 5 mobile application projects. In this paper the authors discuss the estimation framework for both native/hybrid mobile application projects and mobile web application projects. The proposed “Mobile application estimation framework” provides comprehensive coverage for various factors involved in mobile estimation such as layer-wise components, horizontal components and others. The estimation framework also considers the cost drivers and is used as effort adjustment factor. The proposed mobile application estimation framework achieved the MMRE of 0.207 with pred (0.3) of 80%.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kim, Cheong-Hwan, Dae-Seung Ban et Yong-Hwan Lee. « Channel estimation in mobile WiMAX systems ». International Conference on Electrical Engineering 6, no 6 (1 mai 2008) : 1–13. http://dx.doi.org/10.21608/iceeng.2008.34233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rzeszucinski, Pawel, Daniel Lewandowski et Cajetan T. Pinto. « Mobile device-based shaft speed estimation ». Measurement 96 (janvier 2017) : 52–57. http://dx.doi.org/10.1016/j.measurement.2016.10.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

McGuire, M., K. N. Plataniotis et A. N. Venetsanopoulos. « Robust estimation of mobile terminal position ». Electronics Letters 36, no 16 (2000) : 1426. http://dx.doi.org/10.1049/el:20000960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kaur, Anureet, et Kulwant Kaur. « Effort Estimation in Traditional and Agile Mobile Application Development & ; Testing ». Indonesian Journal of Electrical Engineering and Computer Science 12, no 3 (1 décembre 2018) : 1265. http://dx.doi.org/10.11591/ijeecs.v12.i3.pp1265-1272.

Texte intégral
Résumé :
Smartphones<em>/</em>mobile devices are enduring all the aspects of human life. With the significant increase in demand for applications running on smartphones/mobile devices, developers and testers are anticipated to deliver high quality, on time and within budget applications. The estimation of development and testing provides a baseline and act as a tracking gear for stakeholders and developers. There are various approaches for estimation of traditional software development. But mobile applications are considered different from traditional software such as from those running on desktop, laptop or on the web. Many traditional estimation techniques used for these software are adapted to mobile domain. With agile software development (ASD) methodology, the scenario of development and estimation has changed drastically and so as mobile app development and estimation. This paper provides a Systematic Literature Review (SLR) on traditional estimation techniques and agile estimation techniques applied in mobile software/application. Also, effort attributes and accuracy parameters for estimation in mobile apps are presented. However, to date, there are very fewer studies done on the mobile application estimation domain using agile methodology.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fernandes, Thiago Soares, Álvaro Freitas Moreira et Érika Cota. « EPE-Mobile-A framework for early performance estimation of mobile applications ». Software : Practice and Experience 48, no 1 (24 août 2017) : 85–104. http://dx.doi.org/10.1002/spe.2518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zajic, Alenka G. « Estimation of Mobile Velocities and Direction of Movement in Mobile-to-Mobile Wireless Fading Channels ». IEEE Transactions on Vehicular Technology 61, no 1 (janvier 2012) : 130–39. http://dx.doi.org/10.1109/tvt.2011.2175410.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

KIM, SUNGBOK, et SANGHYUP LEE. « ROBUST MOBILE ROBOT VELOCITY ESTIMATION USING A POLYGONAL ARRAY OF OPTICAL MICE ». International Journal of Information Acquisition 05, no 04 (décembre 2008) : 321–30. http://dx.doi.org/10.1142/s0219878908001715.

Texte intégral
Résumé :
This paper presents the robust velocity estimation of a mobile robot using a polygonal array of optical mice that are installed at the bottom of the mobile robot. First, the velocity kinematics from a mobile robot to an array of optical mice is derived, from which the least squares estimation of a mobile robot velocity is obtained. Second, the least squares mobile robot velocity estimation is shown to be robust against measurement noises and partial malfunctions of optical mice. Third, in the presence of installation error, a practical method for optical mouse position calibration is devised. Finally, some experimental results are given to demonstrate the validity and performance of the proposed mobile robot velocity estimation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Röhrig, Christof, et Frank Künemund. « WLAN based Pose Estimation for Mobile Robots ». IFAC Proceedings Volumes 41, no 2 (2008) : 10433–38. http://dx.doi.org/10.3182/20080706-5-kr-1001.01768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

CHEN, Chien-Sheng, Szu-Lin SU et Yih-Fang HUANG. « Mobile Location Estimation in Wireless Communication Systems ». IEICE Transactions on Communications E94-B, no 3 (2011) : 690–93. http://dx.doi.org/10.1587/transcom.e94.b.690.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Cheng, Long, Cheng-Dong Wu, Yun-Zhou Zhang et Hao Chu. « Mobile location estimation scheme in NLOS environment ». IEICE Electronics Express 8, no 21 (2011) : 1829–35. http://dx.doi.org/10.1587/elex.8.1829.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Abd Elfatah, Mohamed G., Hany Nasry Zaky et Ahmed Shams. « Mobile Robot Position Estimation using Milstein Algorithm ». Journal of Physics : Conference Series 1970, no 1 (1 juillet 2021) : 012005. http://dx.doi.org/10.1088/1742-6596/1970/1/012005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Abdul Razak, Rihab, Srikant Sukumar et Hoam Chung. « Scalar field estimation with mobile sensor networks ». International Journal of Robust and Nonlinear Control 31, no 9 (5 mars 2021) : 4287–305. http://dx.doi.org/10.1002/rnc.5469.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Panichpapiboon, Sooksan, et Puttipong Leakkaw. « Traffic Density Estimation : A Mobile Sensing Approach ». IEEE Communications Magazine 55, no 12 (décembre 2017) : 126–31. http://dx.doi.org/10.1109/mcom.2017.1700693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhou, Yuchao, Suparna De, Wei Wang, Ruili Wang et Klaus Moessner. « Missing Data Estimation in Mobile Sensing Environments ». IEEE Access 6 (2018) : 69869–82. http://dx.doi.org/10.1109/access.2018.2877847.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Krasny, L., H. Arslan, D. Koilpillai et S. Chennakeshu. « Doppler spread estimation in mobile radio systems ». IEEE Communications Letters 5, no 5 (mai 2001) : 197–99. http://dx.doi.org/10.1109/4234.922758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hata, M., et M. Sakamoto. « Capacity estimation of cellular mobile radio systems ». Electronics Letters 22, no 9 (1986) : 449. http://dx.doi.org/10.1049/el:19860305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Aldoshkin, D. N., T. N. Yamskikh et R. Yu Tsarev. « Mobile robot motion estimation using Hough transform ». Journal of Physics : Conference Series 1015 (mai 2018) : 032161. http://dx.doi.org/10.1088/1742-6596/1015/3/032161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

KO, Y. C. « Doppler Spread Estimation in Mobile Communication Systems ». IEICE Transactions on Communications E88-B, no 2 (1 février 2005) : 724–28. http://dx.doi.org/10.1093/ietcom/e88-b.2.724.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ries, Michal, et Bruno Gardlo. « Audiovisual quality estimation for mobile video services ». IEEE Journal on Selected Areas in Communications 28, no 3 (avril 2010) : 501–9. http://dx.doi.org/10.1109/jsac.2010.100420.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wang, Jian, et Feng-Xiang Jin. « PRECISION ESTIMATION OF MOBILE LASER SCANNING SYSTEM ». Survey Review 42, no 317 (juillet 2010) : 270–78. http://dx.doi.org/10.1179/003962610x12747001420302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Clark, A. P., et S. G. Jayasinghe. « Channel estimation for land mobile radio systems ». IEE Proceedings F Communications, Radar and Signal Processing 134, no 4 (1987) : 383. http://dx.doi.org/10.1049/ip-f-1.1987.0066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Tsarouhas, Panagiotis H., et George K. Fourlas. « Mission reliability estimation of mobile robot system ». International Journal of System Assurance Engineering and Management 7, no 2 (11 janvier 2016) : 220–28. http://dx.doi.org/10.1007/s13198-015-0408-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Márquez-Neila, Pablo, Javier López-Alberca, José M. Buenaposada et Luis Baumela. « Speeding-up homography estimation in mobile devices ». Journal of Real-Time Image Processing 11, no 1 (9 janvier 2013) : 141–54. http://dx.doi.org/10.1007/s11554-012-0314-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

El Husseini, Ali Houssa, Laurent Ros et Eric Pierre Simon. « Kalman Filter-Based Channel Estimation for Mobile-to-Mobile and Relay Networks ». IEEE Signal Processing Letters 26, no 5 (mai 2019) : 680–84. http://dx.doi.org/10.1109/lsp.2019.2904439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Bhawana Verma, Satish Kumar Alaria. « Design & ; Analysis of Cost Estimation for New Mobile-COCOMO Tool for Mobile Application ». International Journal on Recent and Innovation Trends in Computing and Communication 7, no 1 (31 janvier 2019) : 27–34. http://dx.doi.org/10.17762/ijritcc.v7i1.5222.

Texte intégral
Résumé :
Software cost estimation is a resource forecasting method, which is required by the software development process. However, estimating the workload, schedule and cost of a software project is a complex task because it involves predicting the future using historical project data and extrapolating to see future values. For cost estimates for software projects, several methods are used. Among the various software cost estimation methods available, the most commonly used technology is the COCOMO method. Similarly, to calculate software costs, there are several cost estimating tools available for software developers to use. But these released cost estimation tools can only provide parameters (i.e. cost, development time, average personnel) for large software with multiple lines of code. However, if a software developer wants to estimate the cost of a small project that is usually a mobile application, the available tools will not give the right results. Therefore, to calculate the cost of the mobile application, the available cost estimation method COCOMO II is improved to a new model called New Mobile COCOMO Tool. The New Mobile COCOMO tool developed specifically for mobile applications is a boon for software developers working in small software applications because it only includes important multipliers that play a vital role in estimating the cost of developing mobile applications. Therefore, the objective of this paper is to propose a cost estimation model with a special case of COCOMO II, especially for mobile applications, which calculates the person-month, the programmed time and the average personnel involved in the development of any mobile app.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Mushtaq, Ziema, et Abdul Wahid. « Mobile Complex Factors : An Approach for the Prediction of Mobile Size Parameters ». Recent Advances in Computer Science and Communications 13, no 4 (19 octobre 2020) : 595–603. http://dx.doi.org/10.2174/2213275912666190218152109.

Texte intégral
Résumé :
Background: Mobile application and Effort estimation have direct relationship where on the basis of size, mobile application development efforts can be determined. Inaccuracy or inappropriateness in this approach can cause underestimation or overestimation. The main phase of Mobile application development is to standardize the approach to predict the size of an application. Objectives: The primary objective of this study is to quantify the functionality provided by the software to the end users it is necessary to know the size of an application. This paper focuses on the background of Mobile application size measures, Mobile complexity factors and the future work of the size measure. Methods: This is a survey based study where the primary endpoint was to see the resemblance of selected parameters with modern day mobile application development, a list of questions commonly known as questionnaire was prepared and was sent to more than 140 people including practitioners, researchers and industry people. Results: Out of 40 Parameters 9 parameters were selected to be includes as Mobile complex factors in order to calculate the functional size of a mobile application. Hence new concept for mobile size measures is introduced. Conclusion: Mobile complexity factors were proposed to form a standard to be used as an input in proposed size metrics for estimation of Mobile application development. To validate the effectiveness of this research work, there is something that is to be achieved in future: a) Propose a New Sizing metrics to calculate size of a Mobile application. b) Proposing a model for estimation of Cost in Mobile application development so that the there will be more accuracy in the resultant value and the process of estimation will be more streamlined.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Do, Choi Hyun, Kang Hyunsuk, Hyun Kyung Hak, Kim Soohyun et Kwak Yoon Keun. « Force Distribution Estimation of Wheeled Mobile Robot : Application to Friction Coefficients Estimation ». IFAC Proceedings Volumes 41, no 2 (2008) : 10451–55. http://dx.doi.org/10.3182/20080706-5-kr-1001.01771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Mamchych, Oleksandr, et Maksym Volk. « ESTIMATION OF POWER CONSUMPTION OF MOBILE DEVICES IN CLOUD COMPUTING ». Innovative Technologies and Scientific Solutions for Industries, no 1 (23) (20 avril 2023) : 72–82. http://dx.doi.org/10.30837/itssi.2023.23.072.

Texte intégral
Résumé :
Modern computing tasks require an increase in computing power. This necessitates the creation and production of new equipment for cloud computing. At the same time, the number of personal mobile devices is already measured in billions, and even their partial use could reduce production requirements. In addition, mobile hardware is more energy efficient, which contributes to significant energy savings. The article investigates the issue of qualitative and quantitative assessment of the efficiency of using mobile devices for computing compared to traditional stationary solutions. The purpose of the work is to substantiate the following hypothesis: computing in the cloud based on mobile devices significantly reduces energy consumption than computing on stationary equipment. For this purpose, we show that computing on a mobile GPU is more energy efficient than computing on a stationary processor. Public sources and benchmarks were analyzed to determine the qualitative advantage. On the basis of the studied data, efficiency indicators for various mobile and desktop GPUs are calculated. It is argued that in most cases, mobile solutions consume significantly less energy compared to desktop solutions. To calculate the quantitative advantage, an experiment was conducted on the basis of two platforms: mobile and desktop. The same computational task was implemented using Apple Metal and NVidia CUDA. Based on this task, the energy efficiency indicators of the mobile and stationary graphic professor were calculated. According to the results of the study, a significant advantage of the mobile GPU in terms of energy efficiency has been determined. This result is relevant because the platforms were released in the same year with a difference of several months, so they can be considered peers of each other. The approaches presented here do not take into account the consumption of all other parts of the system, except for the GPUs. This means that the consumption of the motherboard, power supply, etc. can tilt the balance in favor of the mobile processor even more. But for distributed computing, the network connection is very important, and it can consume a significant amount of power on a mobile device. Further research will focus on a more comprehensive accounting of the energy consumption of various computer subsystems.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Семенова, Олена, Андрій Семенов, Андрій Луцишин et Вадим Дира. « Artificial Intelligence Techniques for Mobile Station Location Estimation ». Security of Infocommunication Systems and Internet of Things, no 1 (30 juin 2023) : 01006. http://dx.doi.org/10.31861/sisiot2023.1.01006.

Texte intégral
Résumé :
Modern wireless communication systems require positioning functions, which provide are automatic location estimation of stations within a network. However, when new networks are implemented, much higher accuracy is required when determining geographical coordinates of a mobile station to develop of services related to the station location. To solve the problem of mobile station positioning, its geographical coordinates are calculated, coordinates of the closest base stations being known. The paper proposes to use a genetic neuro-fuzzy controller for improving the effectiveness of positioning a mobile station. Positioning methods providing usage of artificial intelligence methods are based on measurements of levels for signals from the closets access points or base stations, their coordinates are known. The proposed localization method is based on values of received signal strength indicator – RSSI. At the same time, the RSSI method has a disadvantage – low accuracy, which is proposed to be increased by applying methods of artificial intelligence – fuzzy logic, neural networks, genetic algorithms. Therefore, the objective of this paper is to elaborate an optimized method for determining location of a mobile station. In compliance with the suggested method, RSSI values and ToA values enter the genetic neuro-fuzzy controller, after corresponding processing, the distance from the mobile station to the base station appears at its output.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chouraqui, S., et M. Benyettou. « State Estimation for Mobile Robot Using Neural Networks ». Journal of Applied Sciences 9, no 22 (1 novembre 2009) : 3957–65. http://dx.doi.org/10.3923/jas.2009.3957.3965.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Semenova, O. O., et А. O. Semenov. « Using Neural Networks for Mobile Station Location Estimation ». Visnyk of Vinnytsia Politechnical Institute 145, no 4 (2019) : 66–70. http://dx.doi.org/10.31649/1997-9266-2019-145-4-66-70.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Rui Gao, Wenjun Wang, Shanshan Wang et Yao Lu. « Privacy preserving traffic speed estimation via mobile probe ». International Journal of Digital Content Technology and its Applications 6, no 1 (31 janvier 2012) : 446–53. http://dx.doi.org/10.4156/jdcta.vol6.issue1.54.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kulakov, Y., V. Vorotnikov et O. Boychenko. « Multicriterion Estimation of Efficiency of Mobile Network Clustering ». Advanced Science Journal 2015, no 1 (2 février 2015) : 61–67. http://dx.doi.org/10.15550/asj.2015.01.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chen, Qian, Bin Feng Yan, Jun Liao et Gang An. « Analysis of Mobile Phone Camera Performance Estimation Method ». Applied Mechanics and Materials 347-350 (août 2013) : 1824–27. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.1824.

Texte intégral
Résumé :
As the forefront of mobile communications, mobile phone industry broad market prospect attracts more and more enterprises to enter this field. With the rapid improvement of the industry, mobiles develop from original feature phone to smart phones, which can take pictures, catch video, access Internet and so on. Meanwhile, performance of camera also becomes the focus of peoples attention. This paper analyzes the performance of the camera objective and subjective evaluation methods, and raises the appropriate test standards. Finally, it suggests a comprehensive evaluation of subjective and objective scoring method, hope can be promoted.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Nasir, Qassim. « Predictive FTF Adaptive Algorithm for Mobile Channels Estimation ». International Journal of Communications, Network and System Sciences 05, no 09 (2012) : 569–78. http://dx.doi.org/10.4236/ijcns.2012.59067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Oda, Naoki, et Hiroyuki Shimizu. « Vision-based External Force Estimation for Mobile Robots ». IFAC Proceedings Volumes 41, no 2 (2008) : 14732–37. http://dx.doi.org/10.3182/20080706-5-kr-1001.02494.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Jun, WANG, XU Xiaofeng, DONG Mingli, SUN Peng et CHEN Min. « Relative pose estimation method of monocular mobile robot ». Journal of Applied Optics 40, no 4 (2019) : 535–41. http://dx.doi.org/10.5768/jao201940.0401002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lee, Jewang, Jungwoo Lee et Chang Hee Han. « Mobile Device NDF(No Defect Found) Cost Estimation ». Journal of Society of Korea Industrial and Systems Engineering 44, no 2 (30 juin 2021) : 102–14. http://dx.doi.org/10.11627/jkise.2021.44.2.102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lee, Hyun-Jin, et Jae-Hyun Kim. « An Estimation-Based Scanning Method of Mobile Relay ». Journal of Korean Institute of Communications and Information Sciences 37A, no 10 (30 octobre 2012) : 850–57. http://dx.doi.org/10.7840/kics.2012.37a.10.850.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chen, Guo-bin. « A fast motion estimation algorithm for mobile communications ». Journal of Zhejiang University-SCIENCE A 7, S1 (janvier 2006) : 13–18. http://dx.doi.org/10.1631/jzus.2006.as0013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Mukherjee, Sankar, et G. P. Biswas. « Location estimation based routing for mobile adhoc network ». Journal of Intelligent & ; Fuzzy Systems 35, no 2 (26 août 2018) : 1209–24. http://dx.doi.org/10.3233/jifs-169666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Cechowicz, Radosław. « Indoor mobile robot attitude estimation with MEMS gyroscope ». ITM Web of Conferences 15 (2017) : 05010. http://dx.doi.org/10.1051/itmconf/20171505010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Borges, G. A., et M. J. Aldon. « Optimal mobile robot pose estimation using geometrical maps ». IEEE Transactions on Robotics and Automation 18, no 1 (2002) : 87–94. http://dx.doi.org/10.1109/70.988978.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yang, Q., et K. S. Kwak. « Superimposed-pilot-aided channel estimation for mobile OFDM ». Electronics Letters 42, no 12 (2006) : 722. http://dx.doi.org/10.1049/el:20060758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Popović, B. P. « Class of binary sequences for mobile channel estimation ». Electronics Letters 31, no 12 (8 juin 1995) : 944–45. http://dx.doi.org/10.1049/el:19950678.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Irio, Luis, Daniela Oliveira et Rodolfo Oliveira. « Interference estimation in wireless mobile random waypoint networks ». Telfor Journal 8, no 2 (2016) : 93–97. http://dx.doi.org/10.5937/telfor1602093i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Xie, Duosi, Shouxu Zhang et Jianquan Xie. « Distributed dynamic state estimation with flocking mobile agents ». Physica A : Statistical Mechanics and its Applications 509 (novembre 2018) : 1195–206. http://dx.doi.org/10.1016/j.physa.2018.05.146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhang, Xinglin, Zheng Yang, Chenshu Wu, Wei Sun, Yunhao Liu et Kai Liu. « Robust Trajectory Estimation for Crowdsourcing-Based Mobile Applications ». IEEE Transactions on Parallel and Distributed Systems 25, no 7 (juillet 2014) : 1876–85. http://dx.doi.org/10.1109/tpds.2013.250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie