Littérature scientifique sur le sujet « Escherichia coli Inclusions »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Escherichia coli Inclusions ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Escherichia coli Inclusions"
Hänisch, Jan, Marc Wältermann, Horst Robenek et Alexander Steinbüchel. « The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins ». Microbiology 152, no 11 (1 novembre 2006) : 3271–80. http://dx.doi.org/10.1099/mic.0.28969-0.
Texte intégralChen, Shuxiong, Natalie A. Parlane, Jason Lee, D. Neil Wedlock, Bryce M. Buddle et Bernd H. A. Rehm. « New Skin Test for Detection of Bovine Tuberculosis on the Basis of Antigen-Displaying Polyester Inclusions Produced by Recombinant Escherichia coli ». Applied and Environmental Microbiology 80, no 8 (14 février 2014) : 2526–35. http://dx.doi.org/10.1128/aem.04168-13.
Texte intégralDavis, Katelin L., Liang Cheng, José Ramos-Vara, Melissa D. Sánchez, Rebecca P. Wilkes et Mario F. Sola. « Malakoplakia in the Urinary Bladder of 4 Puppies ». Veterinary Pathology 58, no 4 (23 avril 2021) : 699–704. http://dx.doi.org/10.1177/03009858211009779.
Texte intégralWada, Y., H. Kondo, Y. Nakaoka et M. Kubo. « Gastric Attaching and Effacing Escherichia coli Lesions in a Puppy with Naturally Occurring Enteric Colibacillosis and Concurrent Canine Distemper Virus Infection ». Veterinary Pathology 33, no 6 (novembre 1996) : 717–20. http://dx.doi.org/10.1177/030098589603300615.
Texte intégralAldrich, H. C., S. Elvington, HE Machines, R. Szabady, K. Feder, L. McDowell et J. M. Shively. « Ultrastructural and Cytochemical Analyses of the Expression of the Thiobacillus Carboxysome Operon in Escherichia Coli ». Microscopy and Microanalysis 7, S2 (août 2001) : 740–41. http://dx.doi.org/10.1017/s1431927600029779.
Texte intégralBlatchford, Paul A., Colin Scott, Nigel French et Bernd H. A. Rehm. « Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli ». Biotechnology and Bioengineering 109, no 5 (26 décembre 2011) : 1101–8. http://dx.doi.org/10.1002/bit.24402.
Texte intégralKalscheuer, Rainer, Tim Stöveken, Heinrich Luftmann, Ursula Malkus, Rudolf Reichelt et Alexander Steinbüchel. « Neutral Lipid Biosynthesis in Engineered Escherichia coli : Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters ». Applied and Environmental Microbiology 72, no 2 (février 2006) : 1373–79. http://dx.doi.org/10.1128/aem.72.2.1373-1379.2006.
Texte intégralPetrus, Marloes L. C., Lukas A. Kiefer, Pranav Puri, Evert Heemskerk, Michael S. Seaman, Dan H. Barouch, Sagrario Arias, Gilles P. van Wezel et Menzo Havenga. « A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli ». Applied Microbiology and Biotechnology 103, no 21-22 (22 octobre 2019) : 8875–88. http://dx.doi.org/10.1007/s00253-019-10145-1.
Texte intégralCarija, Pinheiro, Iglesias et Ventura. « Computational Assessment of Bacterial Protein Structures Indicates a Selection Against Aggregation ». Cells 8, no 8 (8 août 2019) : 856. http://dx.doi.org/10.3390/cells8080856.
Texte intégralRybalchenko, O. V., O. G. Orlova, L. B. Zakharova, O. N. Vishnevskaya et A. G. Markov. « EFFECT OF PROBIOTIC BACTERIA AND LIPOPOLISACCHARIDES ON EPITELIOCYTES TIGHT JUNCTIONS OF RAT JEJUNUM ». Journal of microbiology epidemiology immunobiology, no 6 (28 décembre 2017) : 80–87. http://dx.doi.org/10.36233/0372-9311-2017-6-80-87.
Texte intégralThèses sur le sujet "Escherichia coli Inclusions"
RODRIGUES, DANIELLA. « Utilização de altas pressões hidrostáticas para o estudo e renaturação de proteínas com estrutura quaternária ». reponame:Repositório Institucional do IPEN, 2012. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10161.
Texte intégralMade available in DSpace on 2014-10-09T14:06:25Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Wangsa-Wirawan, Norbertus Djajasantosa. « Physicochemical properties of protein inclusion bodies ». Title page, contents and introduction only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phw2465.pdf.
Texte intégralBALDUINO, KELI N. « Renaturacao em altas pressoes hidrostaticas de proteinas recombinantes agregadas em corpos de inclusao produzidos em Eschirichia coli ». reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9457.
Texte intégralMade available in DSpace on 2014-10-09T14:03:47Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Wong, Heng Ho. « Modelling studies of the interaction between homogenisation, centrifugation and inclusion body dissolution / ». Title page, contents and summary only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phw8718.pdf.
Texte intégralSaulou, Claire. « Evaluation des propriétés anti-adhésives et biocides de films nanocomposites avec inclusions d’argent, déposés sur acier inoxydable par procédé plasma ». Toulouse, INSA, 2009. http://eprint.insa-toulouse.fr/archive/00000315/.
Texte intégralIn the biomedical domain and the food industry, microbial adhesion to surfaces generates multiple negative consequences, in terms of human health, hygiene and safety of processed food. In this context, our approach is based on developing a 316L stainless steel surface treatment, to prevent microbial colonization. The surface modifications, mediated by chemical or physical treatment, did not promote Saccharomyces cerevisiae detachment, evaluated in vitro using a shear stress flow chamber. The interactions between the microbial surface and metallic elements of the passive film were hypothesized to play a predominant role in this strong adhesion. An original and dual strategy, based on a plasma process associating hexamethyldisiloxane polymerization and silver target bombardment in an asymmetrical radiofrequency discharge, was carried out and optimized. Stainless steel surfaces were thus coated with nanocomposite thin films (~ 175 nm), composed of an organosilicon matrix, exhibiting anti-adhesive properties towards S. Cerevisiae, in which were embedded silver nanoparticles, displaying a high antimicrobial reactivity. A large set of complementary analytical techniques, operating at different scales, was used to correlate nanocomposite film characteristics with their anti-adhesive and antimicrobial efficiency. A total inhibition of yeast cell adhesion was achieved, by increasing the matrix polar character, through oxygen addition during the plasma process. In parallel, a 1. 9 log reduction in viable counts was achieved for sessile yeast cells. Further experiments were dedicated to the thorough understanding of cellular changes induced by silver release. A deterioration of the secondary structure of proteins (cell wall, intracellular), combined with ultra-structure alterations, was observed. In addition, the biocide activity of the nanocomposite film was confirmed against two prokaryotic models (Staphylococcus aureus and Escherichia coli). The necessity of a direct contact between microorganisms and coating was demonstrated for a maximal antimicrobial efficiency. Lastly, the durability of the coating properties was assessed through a repeated use of the nanocomposite films. A decrease in the antifungal activity, coupled to an anti-adhesive property enhancement, was noticed and explained by the silver release during the first use
Hart, Roger A. Bailey James E. Bailey James E. « Characterization of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli / ». Diss., Pasadena, Calif. : California Institute of Technology, 1991. http://resolver.caltech.edu/CaltechETD:etd-06272007-152616.
Texte intégralOlbrich, Richard. « The characterisation and recovery of protein inclusion bodies from recombinant Escherichia-coli ». Thesis, University College London (University of London), 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324583.
Texte intégralGarcia, i. Fruitós Elena. « Regulation of recombinant proteína solubility and conformational quality in Escherichia coli ». Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/3923.
Texte intégralMikkola, Isak. « Does SCP-2 promote the expression of foreign proteins in Escherichia coli ? » Thesis, Linköpings universitet, Biologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129802.
Texte intégralHedhammar, My. « Strategies for facilitated production of recombinant proteins in escherichia coli ». Doctoral thesis, KTH, School of Biotechnology (BIO), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-471.
Texte intégralThe successful genomic era has resulted in a great demand for efficient production and purification of proteins. The main objective of the work described in this thesis was to develop methods to facilitate recovery of target proteins after recombinant production in Escherichia coli.
A positively charged purification tag, Zbasic, has previously been constructed by protein design of a compact three-helix bundle domain, Z. The charged domain was investigated for general use as a fusion partner. All target proteins investigated could be selectively captured by ion-exchange chromatography under conditions excluding adsorption of the majority of Escherichia coli host proteins. A single cation-exchange chromatography step at physiological pH was sufficient to provide Zbasic fusion proteins of high purity close to homogeneity. Moreover, efficient isolation directly from unclarified Escherichia coli homogenates could also be accomplished using an expanded bed mode. Since the intended use of a recombinant protein sometimes requires removal of the purification tag, a strategy for efficient release of the Zbasic moiety using an immobilised protease was developed. The protease columns were reusable without any measurable decrease in activity. Moreover, subsequent removal of the released tag, Zbasic, was effected by adsorption to a second cation-exchanger.
Using a similar strategy, a purification tag with a negatively charged surface, denoted Zacid, was constructed and thoroughly characterised. Contrary to Zbasic, the negatively charged Zacid was highly unstructured in a low conductivity environment. Despite this, all Zacid fusion proteins investigated could be efficiently purified from whole cell lysates using anion-exchange chromatography
Synthesis of polypeptides occurs readily in Escherichia coli providing large amounts of protein in cells of this type, albeit often one finds the recombinant proteins sequestered in inclusion bodies. Therefore, a high throughput method for screening of protein expression was developed. Levels of both soluble and precipitated protein could simultaneously be assessed in vivo by the use of a flow cytometer.
The positively charged domain, Zbasic, was shown also to be selective under denaturing conditions, providing the possibility to purify proteins solubilised from inclusion bodies. Finally, a flexible process for solid-phase refolding was developed, using Zbasic as a reversible linker to the cation-exchanger resin.
Livres sur le sujet "Escherichia coli Inclusions"
Henderson, Ian. Solving the inclusion body problem : A case study : high level expression of TEM-1 [beta]-lactamase in Escherichia coli. [s.l.] : typescript, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Escherichia coli Inclusions"
Garcìa-Fruitòs, Elena, Nuria Gonzàlez-Montalbàn, Mònica Martìnez-Alonso, Ursula Rinas et Antonio Villaverde. « Systems-Level Analysis of Protein Quality in Inclusion Body-Forming Escherichia coli Cells ». Dans Systems Biology and Biotechnology of Escherichia coli, 295–326. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9394-4_15.
Texte intégralWilliamson, Richard A. « Refolding of TIMP-2 from Escherichia coli Inclusion Bodies ». Dans Methods in Molecular Biology, 111–21. Totowa, NJ : Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-299-5_7.
Texte intégralMouillac, Bernard, et Jean-Louis Banères. « Mammalian Membrane Receptors Expression as Inclusion Bodies in Escherichia coli ». Dans Methods in Molecular Biology, 39–48. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-344-2_3.
Texte intégralPanda, Amulya K. « Bioprocessing of Therapeutic Proteins from the Inclusion Bodies of Escherichia coli ». Dans Biotechnology in India II, 43–93. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36466-8_3.
Texte intégralLee, Wen-Chien, et Shao-Yen Hsu. « Over-Expression of Functionally Active Inclusion Bodies of Enzymes in Recombinant Escherichia coli ». Dans Emerging Areas in Bioengineering, 21–33. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527803293.ch2.
Texte intégralBurgess, Richard R. « [12] Purification of overproduced Escherichia coli RNA polymerase σ factors by solubilizing inclusion bodies and refolding from Sarkosyl ». Dans Methods in Enzymology, 145–49. Elsevier, 1996. http://dx.doi.org/10.1016/s0076-6879(96)73014-8.
Texte intégral