Articles de revues sur le sujet « ERK5/BMK1 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : ERK5/BMK1.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 29 meilleurs articles de revues pour votre recherche sur le sujet « ERK5/BMK1 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nithianandarajah-Jones, Gopika N., Bettina Wilm, Christopher E. P. Goldring, Jürgen Müller et Michael J. Cross. « The role of ERK5 in endothelial cell function ». Biochemical Society Transactions 42, no 6 (17 novembre 2014) : 1584–89. http://dx.doi.org/10.1042/bst20140276.

Texte intégral
Résumé :
Extracellular-signal-regulated kinase 5 (ERK5), also termed big MAPK1 (BMK1), is the most recently discovered member of the mitogen-activated protein kinase (MAPK) family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that, in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling and regulating tumour angiogenesis. The present review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Roberts, Owain Llŷr, Katherine Holmes, Jürgen Müller, Darren A. E. Cross et Michael J. Cross. « ERK5 and the regulation of endothelial cell function ». Biochemical Society Transactions 37, no 6 (19 novembre 2009) : 1254–59. http://dx.doi.org/10.1042/bst0371254.

Texte intégral
Résumé :
ERK5 (extracellular-signal-regulated kinase 5), also termed BMK1 [big MAPK1 (mitogen-activated protein kinase 1)], is the most recently discovered member of the MAPK family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling, regulating hypoxia, tumour angiogenesis and cell migration. This review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function.
Styles APA, Harvard, Vancouver, ISO, etc.
3

SQUIRES, Matthew S., Paula M. NIXON et Simon J. COOK. « Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1 ». Biochemical Journal 366, no 2 (1 septembre 2002) : 673–80. http://dx.doi.org/10.1042/bj20020372.

Texte intégral
Résumé :
Serum and growth factors activate both the canonical extracellular signal-regulated kinase (ERK) 1/2 pathway and the ERK5/big mitogen-activated protein kinase 1 (BMK) 1 pathway. Pharmacological inhibition of the ERK1/2 pathway using PD98059 and U0126 prevents cyclin D1 expression and inhibits cell proliferation, arguing that the ERK1/2 pathway is rate limiting for cell-cycle re-entry. However, both PD98059 and U0126 also inhibit the ERK5/BMK1 pathway, raising the possibility that the anti-proliferative effect of such drugs may be due to inhibition of ERK5 or both pathways. Here we characterize the effect of the novel mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD184352, on the ERK1/2 and ERK5 pathways in the Chinese hamster fibroblast cell line CCl39. In quiescent cells, serum-stimulated ERK1 activity was completely inhibited by PD184352 with an IC50 below 1μM, whereas ERK5 activation was unaffected even at 20μM. Serum-stimulated DNA synthesis and cyclin D1 expression was inhibited by low doses of PD184352, which abolished ERK1 activity but had no effect on ERK5. Similarly, in cycling cells PD184352 caused a dose-dependent G1 arrest and inhibition of cyclin D1 expression at low doses, which inhibited ERK1 but were without effect on ERK5. These results indicate that the anti-proliferative effect of PD184352 is due to inhibition of the classical ERK1/2 pathway and does not require inhibition of the ERK5 pathway.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yan, Chen, Honglin Luo, Jiing-Dwan Lee, Jun-ichi Abe et Bradford C. Berk. « Molecular Cloning of Mouse ERK5/BMK1 Splice Variants and Characterization of ERK5 Functional Domains ». Journal of Biological Chemistry 276, no 14 (3 janvier 2001) : 10870–78. http://dx.doi.org/10.1074/jbc.m009286200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Cameron, Scott J., Jun-ichi Abe, Sundeep Malik, Wenyi Che et Jay Yang. « Differential Role of MEK5α and MEK5β in BMK1/ERK5 Activation ». Journal of Biological Chemistry 279, no 2 (28 octobre 2003) : 1506–12. http://dx.doi.org/10.1074/jbc.m308755200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zheng, Qinlei, Guoyong Yin, Chen Yan, Megan Cavet et Bradford C. Berk. « 14-3-3β Binds to Big Mitogen-activated Protein Kinase 1 (BMK1/ERK5) and Regulates BMK1 Function ». Journal of Biological Chemistry 279, no 10 (16 décembre 2003) : 8787–91. http://dx.doi.org/10.1074/jbc.m310212200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kamakura, Sachiko, Tetsuo Moriguchi et Eisuke Nishida. « Activation of the Protein Kinase ERK5/BMK1 by Receptor Tyrosine Kinases ». Journal of Biological Chemistry 274, no 37 (10 septembre 1999) : 26563–71. http://dx.doi.org/10.1074/jbc.274.37.26563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Reddy, Sekhar P. M., Pavan Adiseshaiah, Paul Shapiro et Hue Vuong. « BMK1 (ERK5) Regulates Squamous Differentiation MarkerSPRR1BTranscription in Clara-like H441 Cells ». American Journal of Respiratory Cell and Molecular Biology 27, no 1 (juillet 2002) : 64–70. http://dx.doi.org/10.1165/ajrcmb.27.1.20020003oc.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hayashi, Masaaki, et Jiing-Dwan Lee. « Role of the BMK1/ERK5 signaling pathway : lessons from knockout mice ». Journal of Molecular Medicine 82, no 12 (28 octobre 2004) : 800–808. http://dx.doi.org/10.1007/s00109-004-0602-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Radu, Maria, Karen Lyle, Klaus P. Hoeflich, Olga Villamar-Cruz, Hartmut Koeppen et Jonathan Chernoff. « p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway ». Molecular and Cellular Biology 35, no 23 (21 septembre 2015) : 3990–4005. http://dx.doi.org/10.1128/mcb.00630-15.

Texte intégral
Résumé :
p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements, cell proliferation, attachment, and migration in a variety of cellular contexts, including endothelial cells. However, the role of endothelial Pak in embryo development has not been reported, and currently, there is no consensus on the endothelial function of individual Pak isoforms, in particular p21-activated kinase 2 (Pak2), the main Pak isoform expressed in endothelial cells. In this work, we employ genetic and molecular studies that show that Pak2, but not Pak1, is a critical mediator of development and maintenance of endothelial cell function. Endothelial depletion of Pak2 leads to early embryo lethality due to flawed blood vessel formation in the embryo body and yolk sac. In adult endothelial cells, Pak2 depletion leads to severe apoptosis and acute angiogenesis defects, and in adult mice, endothelial Pak2 deletion leads to increased vascular permeability. Furthermore, ubiquitous Pak2 deletion is lethal in adult mice. We show that many of these defects are mediated through a newly unveiled Pak2/Bmk1 pathway. Our results demonstrate that endothelial Pak2 is essential during embryogenesis and also for adult blood vessel maintenance, and they also pinpoint the Bmk1/Erk5 pathway as a critical mediator of endothelial Pak2 signaling.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kato, Yutaka, Richard I. Tapping, Shuang Huang, Mark H. Watson, Richard J. Ulevitch et Jiing-Dwan Lee. « Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor ». Nature 395, no 6703 (octobre 1998) : 713–16. http://dx.doi.org/10.1038/27234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

McCaw, B. J., S. Y. Chow, E. S. M. Wong, K. L. Tan, H. Guo et G. R. Guy. « Identification and characterization of mErk5-T, a novel Erk5/Bmk1 splice variant ». Gene 345, no 2 (janvier 2005) : 183–90. http://dx.doi.org/10.1016/j.gene.2004.11.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Pi, Xinchun, Chen Yan et Bradford C. Berk. « Big Mitogen-Activated Protein Kinase (BMK1)/ERK5 Protects Endothelial Cells From Apoptosis ». Circulation Research 94, no 3 (20 février 2004) : 362–69. http://dx.doi.org/10.1161/01.res.0000112406.27800.6f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kato, Y. « BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C ». EMBO Journal 16, no 23 (1 décembre 1997) : 7054–66. http://dx.doi.org/10.1093/emboj/16.23.7054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Maciejewska, Zuzanna, Aude Pascal, Jacek Z. Kubiak et Maria A. Ciemerych. « Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos ». Folia Histochemica et Cytobiologica 49, no 3 (28 octobre 2011) : 528–34. http://dx.doi.org/10.5603/fhc.2011.0074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Pi, Xinchun, Gwenaele Garin, Liang Xie, Qinlei Zheng, Heng Wei, Jun-ichi Abe, Chen Yan et Bradford C. Berk. « BMK1/ERK5 Is a Novel Regulator of Angiogenesis by Destabilizing Hypoxia Inducible Factor 1α ». Circulation Research 96, no 11 (10 juin 2005) : 1145–51. http://dx.doi.org/10.1161/01.res.0000168802.43528.e1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Sun, Weiyong, Kamala Kesavan, Brian C. Schaefer, Timothy P. Garrington, Margaret Ware, Nancy Lassignal Johnson, Erwin W. Gelfand et Gary L. Johnson. « MEKK2 Associates with the Adapter Protein Lad/RIBP and Regulates the MEK5-BMK1/ERK5 Pathway ». Journal of Biological Chemistry 276, no 7 (9 novembre 2000) : 5093–100. http://dx.doi.org/10.1074/jbc.m003719200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yang, C. C., O. I. Ornatsky, J. C. McDermott, T. F. Cruz et C. A. Prody. « Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1 ». Nucleic Acids Research 26, no 20 (1 octobre 1998) : 4771–77. http://dx.doi.org/10.1093/nar/26.20.4771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Cameron, Scott J., Seigo Itoh, Christopher P. Baines, Changxi Zhang, Shinsuke Ohta, Wenyi Che, Michael Glassman et al. « Activation of big MAP kinase 1 (BMK1/ERK5) inhibits cardiac injury after myocardial ischemia and reperfusion ». FEBS Letters 566, no 1-3 (21 mai 2004) : 255–60. http://dx.doi.org/10.1016/j.febslet.2004.03.120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Hayashi, Masaaki, Sung-Woo Kim, Kyoko Imanaka-Yoshida, Toshimichi Yoshida, E. Dale Abel, Brian Eliceiri, Young Yang, Richard J. Ulevitch et Jiing-Dwan Lee. « Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure ». Journal of Clinical Investigation 113, no 8 (15 avril 2004) : 1138–48. http://dx.doi.org/10.1172/jci200419890.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Arias-González, Laura, Inmaculada Moreno-Gimeno, Antonio Rubio del Campo, Serrano-Oviedo Leticia, María Llanos Valero, Azucena Esparís-Ogando, Miguel Ángel de la Cruz-Morcillo et al. « ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL : Implication in Clear Cell Renal Carcinoma ». Neoplasia 15, no 6 (juin 2013) : 649—IN17. http://dx.doi.org/10.1593/neo.121896.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Watanabe, N. « Control of body size by SMA-5, a homolog of MAP kinase BMK1/ERK5, in C. elegans ». Development 132, no 14 (15 juillet 2005) : 3175–84. http://dx.doi.org/10.1242/dev.01895.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wei, Xudong, Rui-Hua Wei, Timothy Garrington, Gary L. Johnson et Erwin W. Gelfand. « MEKK2-MEK5-BMK1/ERK5-MEF2C activation : A new pathway regulating c-jun gene expression in stimulated mast cells ». Journal of Allergy and Clinical Immunology 109, no 1 (janvier 2002) : S323. http://dx.doi.org/10.1016/s0091-6749(02)82133-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Luo, Fengbao, Jian Shi, Qianqian Shi, Xianlin Xu, Ying Xia et Xiaozhou He. « Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy ». Cellular Physiology and Biochemistry 39, no 3 (2016) : 1051–67. http://dx.doi.org/10.1159/000447812.

Texte intégral
Résumé :
Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs) are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2), the c-Jun N-terminal kinases (JNK), p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1). Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Vassalli, Giuseppe, Giuseppina Milano et Tiziano Moccetti. « Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation ». Journal of Transplantation 2012 (2012) : 1–16. http://dx.doi.org/10.1155/2012/928954.

Texte intégral
Résumé :
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rovida, Elisabetta, Elena Spinelli, Sara Sdelci, Valentina Barbetti, Andrea Morandi, Serena Giuntoli et Persio Dello Sbarba. « ERK5/BMK1 Is Indispensable for Optimal Colony-Stimulating Factor 1 (CSF-1)-Induced Proliferation in Macrophages in a Src-Dependent Fashion ». Journal of Immunology 180, no 6 (5 mars 2008) : 4166–72. http://dx.doi.org/10.4049/jimmunol.180.6.4166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Xing, Feiyue, Yong Jiang, Jing Liu, Kesen Zhao, Yongyan Mo, Zhifeng Liu et Yaoying Zeng. « Downregulation of human endothelial nitric oxide synthase promoter activity by p38 mitogen-activated protein kinase activation ». Biochemistry and Cell Biology 84, no 5 (octobre 2006) : 780–89. http://dx.doi.org/10.1139/o06-092.

Texte intégral
Résumé :
Human endothelial nitric oxide synthase (eNOS) plays a crucial role in maintaining blood pressure homeostasis and vascular integrity. eNOS gene expression may be upregulated by a signaling pathway, including PI-3Kγ → Jak2 → MEK1 → ERK1/2 → PP2A. It remains unclear whether other mitogen-activated protein kinase (MAPK) family members, such as JNK, p38 kinase, and ERK5/BMK1, also modulate eNOS gene expression. Our purpose, therefore, is to shed light on the effect of the p38 MAPK signaling pathway on the regulation of eNOS promoter activity. The results showed that a red fluorescent protein reporter gene vector containing the full length of the human eNOS promoter was first successfully constructed, expressing efficiently in ECV304 cells with the characteristics of real time observation. The wild-types of p38α, p38β, p38γ, and p38δ signal molecules all markedly downregulated promoter activity, which could be reversed by their negative mutants, including p38α (AF), p38β (AF), p38γ (AF), and p38δ (AF). Promoter activity was also significantly downregulated by MKK6b (E), an active mutant of an upstream kinase of p38 MAPK. The reduction in promoter activity by p38 MAPK could be blocked by treatment with a p38 MAPK specific inhibitor, SB203580. Moreover, the activation of endogenous p38 MAPK induced by lipopolysaccharide resulted in a prominent reduction in promoter activity. These findings strongly suggest that the activation of the p38 MAPK signaling pathway may be implicated in the downregulation of human eNOS promoter activity.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yoshizumi, Masanori, Yoji Kyotani, Jing Zhao, Kosuke Nagayama, Satoyasu Ito, Yuichi Tsuji et Kentaro Ozawa. « The Role of Big Mitogen-Activated Protein Kinase 1 (BMK1) / Extracellular Signal-Regulated Kinase 5 (ERK5) in the Pathogenesis and Progression of Atherosclerosis ». Journal of Pharmacological Sciences 120, no 4 (2012) : 259–63. http://dx.doi.org/10.1254/jphs.12r11cp.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

IZAWA, Yuki, Masanori YOSHIZUMI, Keisuke ISHIZAWA, Yoshiko FUJITA, Shuji KONDO, Shoji KAGAMI, Kazuyoshi KAWAZOE, Koichiro TSUCHIYA, Shuhei TOMITA et Toshiaki TAMAKI. « Big Mitogen-Activated Protein Kinase 1 (BMK1)/Extracellular Signal Regulated Kinase 5 (ERK5) Is Involved in Platelet-Derived Growth Factor (PDGF)-Induced Vascular Smooth Muscle Cell Migration ». Hypertension Research 30, no 11 (2007) : 1107–17. http://dx.doi.org/10.1291/hypres.30.1107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie