Sommaire
Littérature scientifique sur le sujet « Equazioni degeneri »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Equazioni degeneri ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Equazioni degeneri"
Bonafede, Salvatore. « Sottosoluzioni deboli delle equazioni paraboliche lineari del secondo ordine degeneri ». Rendiconti del Circolo Matematico di Palermo 39, no 1 (février 1990) : 132–52. http://dx.doi.org/10.1007/bf02862881.
Texte intégralBonafede, Salvatore. « Un principio di massimo generalizzato per le sottosoluzioni deboli delle equazioni paraboliche degeneri ». Rendiconti del Circolo Matematico di Palermo 41, no 1 (janvier 1992) : 81–95. http://dx.doi.org/10.1007/bf02844465.
Texte intégralThèses sur le sujet "Equazioni degeneri"
Zoboli, Marco. « Controllabilità a zero per equazioni differenziali degeneri ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/4585/.
Texte intégralVerduci, Domenica. « Equazioni di stato della materia in astrofisica ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21200/.
Texte intégralBalboni, Marco. « Equazioni di stato della materia in astrofisica ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18485/.
Texte intégralMARINO, LORENZO. « Regolarizzazione debole attraverso rumore di Lévy degenere e sue applicazioni ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/330542.
Texte intégralAfter a general introduction about the regularization by noise phenomenon in the degenerate setting, the first part of this thesis focuses at establishing the Schauder estimates, a useful analytical tool to prove also the well-posedness of stochastic differential equations (SDEs), for two different classes of Kolmogorov equations under a weak Hörmander-like condition, whose coefficients lie in suitable anisotropic Hölder spaces with multi-indices of regularity. The first class considers a nonlinear system controlled by a symmetric ⍺-stable operator acting only on some components. Our method of proof relies on a perturbative approach based on forward parametrix expansions through Duhamel-type formulas. Due to the low regularizing properties given by the degenerate setting, we also exploit some controls on Besov norms, in order to deal with the non-linear perturbation. As an extension of the first one, we also present Schauder estimates associated with a degenerate Ornstein-Uhlenbeck operator driven by a larger class of ⍺-stable-like operators, like the relativistic or the Lamperti stable one. The proof of this result relies instead on a precise analysis of the behaviour of the associated Markov semigroup between anisotropic Hölder spaces and some interpolation techniques. Exploiting a backward parametrix approach, the second part of this thesis aims at establishing the well-posedness in a weak sense of a degenerate chain of SDEs driven by the same class of ⍺-stable-like processes, under the assumptions of the minimal Hölder regularity on the coefficients. As a by-product of our method, we also present Krylov-type estimates of independent interest for the associated canonical process. Finally, we emphasize through suitable counter-examples that there exists indeed an (almost) sharp threshold on the regularity exponents ensuring the weak well-posedness for the SDE. In connection with some mechanical applications for kinetic dynamics with friction, we conclude by investigating the stability of second-order perturbations for degenerate Kolmogorov operators in Lp and Hölder norms.
Di, Bari Giovanni. « Equazioni di stato della materia in astrofisica ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20033/.
Texte intégral