Sommaire
Littérature scientifique sur le sujet « Équations One-Way »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Équations One-Way ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Équations One-Way"
GUSTAFSSON, BERTIL. « Analysis and Methods in Fluid Mechanics ». International Journal of Modern Physics C 02, no 01 (mars 1991) : 75–85. http://dx.doi.org/10.1142/s0129183191000093.
Texte intégralCarrell, Sean, et Guillaume Chapuy. « A simple recurrence formula for the number of rooted maps on surfaces by edges and genus ». Discrete Mathematics & ; Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (1 janvier 2014). http://dx.doi.org/10.46298/dmtcs.2424.
Texte intégralThèses sur le sujet "Équations One-Way"
Ruello, Maëlys. « Méthodes de propagation de type One-Way pour les équations de Navier-Stokes : vers le calcul des perturbations optimales ». Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0061.
Texte intégralOne-Way approaches are numerical simulation methods for wave propagation phenomena in a preferred direction, which overcome the limitation (single-mode tracking) of modal methods while ensuring a low computational cost compared to a direct simulation. Although these methods have been used for over fifty years in various fields such as electromagnetism and geophysics, their application in fluid mechanics is more recent, with pioneering work by T. Colonius and A. Towne in 2015.This thesis had a dual objective. Firstly, it aimed to develop One-Way type simulation methods for the Navier-Stokes equations, by extending the methodology proposed in C. Rudel's thesis work for the Euler equations. Subsequently, these methods were used to develop a numerical tool for calculating optimal flow disturbance. All these developments have been tested on a number of representative problems, considering situations of increasing complexity. In particular, the case of a partially lined duct, in the presence of a surface instability, was treated using a domain decomposition method based on One-Way solvers, and compared with both experimental data and results from other numerical solvers. Additionally, the ability of One-Way approaches to propagate boundary layer instabilities and their possible coupling was observed. Finally, an algorithm for computing optimal perturbations, based on an adjoint method, was used to determine, among other things, the optimal forcing and associated response of a two-dimensional boundary layer flow at Mach 4.5
Altaie, Huda. « Nouvelle technique de grilles imbriquées pour les équations de Saint-Venant 2D ». Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4220/document.
Texte intégralMost flows in the rivers, seas, and ocean are shallow water flow in which the horizontal length andvelocity scales are much larger than the vertical ones. The mathematical formulation of these flows, so called shallow water equations (SWEs). These equations are a system of hyperbolic partial differentialequations and they are effective for many physical phenomena in the oceans, coastal regions, riversand canals. This thesis focuses on the design of a new two-way interaction technique for multiple nested grids 2DSWEs using the numerical methods. The first part of this thesis includes, proposing several ways to develop the derivation of shallow water model. The complete derivation of this system from Navier-Stokes equations is explained. Studying the development and evaluation of numerical methods by suggesting new spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time which are effective for modeling in oceanic and atmospheric flows. Several numerical examples for this model using Gaussian level initial condition are implemented in order to validate the efficiency of the proposed method. In the second part of our work, we are interested to propose a new two-way interaction technique for multiple nested grids to solve ocean models using four choices of higher restriction operators (update schemes) for the free surface elevation and velocities with high accuracy results. Our work focused on the numerical resolution of SWEs by nested grids. At each level of resolution, we used explicit finite differences methods on Arakawa C-grid. In order to be able to refine the calculations in troubled regions and move them into quiet areas, we have considered several levels of resolution using nested grids. This makes it possible to considerably increase the performance ratio of the method, provided that the interactions (spatial and temporal) between the grids are effectively controlled. In the third part of this thesis, several numerical examples are tested to show and verify twoway interaction technique for multiple nested grids of shallow water models can works efficiently over different periods of time with nesting 3:1 and 5:1 at multiple levels. Some examples for multiple nested grids of the tsunami model with nesting 5:1 using moving boundary conditions are tested in the fourth part of this work
Doc, Jean-Baptiste. « Approximations unidirectionnelles de la propagation acoustique en guide d'ondes irrégulier : application à l'acoustique urbaine ». Thesis, Le Mans, 2012. http://www.theses.fr/2012LEMA1032/document.
Texte intégralThe urban environment is the seat of loud noise generated by means of transportation. To fight against these nuisances, European legislation requires the achievement of noise maps. In this context, fundamental work is carried around the propagation of acoustic low-frequency waves in urban areas. Several recent research focuses on the implementation of wave methods for acoustic wave propagation in such environments. The computational cost of these methods, however, limits their use in the context of engineering. The objective of this thesis focuses on the one-way approximation of wave propagation, applied to urban acoustics. This approximation allows to make simplifications on the wave equation in order to limit the computation time. The particularity of this thesis lies in the consideration of variations, continuous or discontinuous, of the width of streets. Two formalisms are used: parabolic equation and a multimodal approach. The multimodal approach provides support for a theoretical study on the mode-coupling mechanisms in two-dimensional irregular waveguides. For this, the pressure field is decomposed according to the direction of wave propagation in the manner of a Bremmer series. The specific contribution of the one-way approximation is studied as a function of the geometric parameters of the waveguide, which helps identify the limits of validity of this approximation. Use of the parabolic equation is intended for application to urban acoustic. A coordinate transformation is associated with the wide-angle parabolic-equation in order to take into account the variation effect of the waveguide section. A resolution method is developed specifically and allows an accurate assessment of the pressure field. On the other hand, a solving method of the three-dimensional parabolic-equation is suitable for the modeling of acoustic propagation in urban areas. This method takes into account sudden or continuous variations of the street width. A comparison with measurements on scaled model of street allows to highlight the possibilities of the method