Sommaire
Littérature scientifique sur le sujet « Équations différentielles stochastiques rétrogrades (EDSR) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Équations différentielles stochastiques rétrogrades (EDSR) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Équations différentielles stochastiques rétrogrades (EDSR)"
Buckdahn, Rainer, Marc Quincampoix et Aurel Rascanu. « Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux dérivées partielles ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no 11 (décembre 1997) : 1159–62. http://dx.doi.org/10.1016/s0764-4442(97)83546-x.
Texte intégralKobylanski, Magdalena. « Résultats d'existence et d'unicité pour des équations différentielles stochastiques rétrogrades avec des générateurs à croissance quadratique ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no 1 (janvier 1997) : 81–86. http://dx.doi.org/10.1016/s0764-4442(97)80108-5.
Texte intégralThèses sur le sujet "Équations différentielles stochastiques rétrogrades (EDSR)"
El, Asri Brahim. « Switching optimal et équations différentielles stochastiques rétrogrades réfléchies ». Le Mans, 2010. http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1003.pdf.
Texte intégralWe study optimal switching and Lр-solution for doubly reflected backward stochastic differential equations. In the first part, we show existence and uniqueness of a solution for a system of m variational partial differential inequalities with inter-connected obstacles. This system is the deterministic version of the Verification Theorem of the Markovian optimal m-states switching problem. The switching cost functions are arbitrary. In the second part we study the problem of the deterministic version of the Verification Theorem for the optimal m-states switching in infinite horizon under Markovian framework with arbitrary switching cost functions. The problem is formulated as an extended impulse control problem and solved by means of probabilistic tools such as the Snell envelop of processes and reflected backward stochastic differential equations. A viscosity solutions approach is employed to carry out a fine analysis on the associated system of m variational inequalities with inter-connected obstacles. We show that the vector of value functions of the optimal problem is the unique viscosity solution to the system. Finally in the third part, we deal the problem of existence and uniqueness of a solution for à backward stochastic differential equation (BSDE for short) with two strictly separated continuous reflecting barriers in the case when the terminal value, the generator and the obstacle process are Lр-integrable with р Є (1, 2). The main idea is to use the concept of local solution to construct the global one. As applications, we obtain new results in zerosum Dynkin games and in double obstacle variational inequalities theories
Choukroun, Sébastien. « Equations différentielles stochastiques rétrogrades et contrôle stochastique et applications aux mathématiques financières ». Sorbonne Paris Cité, 2015. https://theses.hal.science/tel-01168589.
Texte intégralThis thesis is divided into two parts that may be read independently. In the first part, three uses of backward stochastic differential equations are presented. The first chapter is an application of these equations to the mean-variance hedging problem in an incomplete market where multiple defaults can occur. We make a conditional density hypothesis on the default times. We then decompose the value function into a sequence of value functions between consecutive default times and we prove that each of them admits a quadratic form. Finally, we illustrate our results for a specific case where 2 default times follow independent exponential laws. The two following applications are extensions of the paper [75]. The second chapter is the study of a class of backward stochastic differential equations with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal solution are proved by a double penalization approach under regularity assumptions on the obstacle. This method allows us to solve the case where the diffusion coefficient is degenerate. We also show, in a suitable markovian framework, the connection between our class of backward stochastic differential equations and fully nonlinear variational inequalities. In particular, our backward equation representation provides a Feynman-Kac type formula for PDEs associated to general zero-sum stochastic differential controller-and-stopper games, where control affects both drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we state a dual game formula of this backward equation minimal solution, which gives a new representation for zero-sum stochastic differential controller-and-stopper games The third chapter is linked to model uncertainty, where the uncertainty affects both volatility and intensity. This kind of stochastic control problems is associated to a fully nonlinear integro-partial differential equation, such that the measure lambda(a,. ) characterizing the jump part depends on a parameter a. We do not assume that the family lambda(a,. ) is dominated. We obtain a nonlinear Feynman-Kac formula for the value function associated to these control problems. To this aim, we introduce a class of backward stochastic differential equations with jumps and partially constrained diffusive part. Here the case where the diffusion coefficient is degenerate is solved as well. In the second part, a conditional asset liability management problem is solved. We first derive the proper domain of definition of the value function associated to the problem by identifying the minimal wealth for which there exists an admissible investment strategy allowing to satisfy the constraint at maturity. This minimal wealth is identified as a solution of viscosity of a PDE. We also show that its Fenschel-Legendre transform is a solution of viscosity of another PDE, which allows to obtain a scheme with a faste convergence. We then identify the value function linked to the problem of interest as a solution of viscosity of a PDE on its domain of definition. Finally, we solve numerically the problem and we provide graphs of the minimal wealth, of the value function of the problem and of the optimal strategy
Moussaoui, Hadjer. « Contribution aux équations différentielles stochastiques rétrogrades et application aux équations aux dérivées partielles et au contrôle stochastique ». Electronic Thesis or Diss., Toulon, 2018. http://www.theses.fr/2018TOUL0016.
Texte intégralThe objective of this thesis is to study backward stochastic differential equations (BSDE) and forward-backward stochastic differential equations (FBSDE), the main results are:The first is about the solvability of logarithmic BSDE of type (lylllnlyll lzlJllnlzll) and application to partial differential equations (PDE). The second concems the existence of strict optimal control for a system driven by a strongly coupled FBSDE. Multiple applications are established. A result of existence and uniqueness of the solution of the Hamilton-Jacobi-Belmann equation (HJB) is also established
Madec, Pierre-Yves. « Equations différentielles stochastiques rétrogrades ergodiques et applications aux EDP ». Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S027/document.
Texte intégralThis thesis deals with the study of ergodic BSDE and their applications to the study of the large time behaviour of solutions to semilinear parabolic PDE. In a first time, we establish some existence and uniqueness results to an ergodic BSDE with Neumann boundary conditions in an unbounded convex set in a weakly dissipative environment. Then we study their link with PDE with Neumann boundary condition and we give an application to an ergodic stochastic control problem. The second part consists of two sections. In the first one, we study the large time bahaviour of mild solutions to semilinear parabolic PDE in infinite dimension by a probabilistic method. This probabilistic method relies on a Basic coupling estimate result which gives us an exponential rate of convergence of the solution toward its asymptote. Let us mention that that this asymptote is fully determined by the solution of the ergodic semilinear PDE associated to the parabolic semilinear PDE. Then, we adapt this method to the sudy of the large time behaviour of viscosity solutions of semilinear parabolic PDE with Neumann boundary condition in a convex and bounded set in finite dimension. By regularization and penalization procedures, we obtain similar results as those obtained in the mild context, especially with an exponential rate of convergence for the solution toward its asymptote
Bandini, Elena. « Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.
Texte intégralIn the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
Bandini, Elena. « Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique ». Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005.
Texte intégralIn the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure μ on ℝ+ x E, where E is a Lusin space, with compensator v(dt,dx)=dAt φ(dx). The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when A is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e. when A is a right-continuous nondecreasing predictable process. Those results are relevant, for example, in the frameworkof control problems related to PDMPs. Indeed, when μ is the jump measure of a PDMP on a bounded domain, then A is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process X is the sum of a local martingale and an adapted process A such that [N,A] = 0, for any continuouslocal martingale N.Given a function u:[0,T] x ℝ → R, which is of class C⁰′¹ (or sometimes less), we provide a chain rule type expansion for u(t, Xt), which constitutes a generalization of Itô's lemma being valid when u is of class C¹′².This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process X is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions (Y,Z,U) of the considered BSDEs via the process X and the solution u to an associated integro PDE
Wang, Hao. « Equations différentielles stochastiques rétrogrades réfléchies et applications au problème d'investissement réversible et aux équations aux dérivées partielles ». Le Mans, 2009. http://cyberdoc.univ-lemans.fr/theses/2009/2009LEMA1013.pdf.
Texte intégralThe main objective of the thesis is to study the existence and uniqueness of solutions of reflected backward stochastic differential equations and to relate this notion to the study of the problems such as the reversible investment or so-called optimal switching problem, the mixed zero-sum stochastic differential games and the probabilistic interpretation of the weak solution of partial differential equations, either in viscosity sense or in Sobolev space under different framework
Chaudru, de Raynal Paul Éric. « Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov ». Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00954417.
Texte intégralKharroubi, Idris. « EDS Rétrogrades et Contrôle Stochastique Séquentiel en Temps Continu en Finance ». Phd thesis, Université Paris-Diderot - Paris VII, 2009. http://tel.archives-ouvertes.fr/tel-00439542.
Texte intégralSalhi, Rym. « Contributions to quadratic backward stochastic differential equations with jumps and applications ». Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.
Texte intégralThis thesis focuses on backward stochastic differential equation with jumps and their applications. In the first chapter, we study a backward stochastic differential equation (BSDE for short) driven jointly by a Brownian motion and an integer valued random measure that may have infinite activity with compensator being possibly time inhomogeneous. In particular, we are concerned with the case where the driver has quadratic growth and unbounded terminal condition. The existence and uniqueness of the solution are proven by combining a monotone approximation technics and a forward approach. Chapter 2 is devoted to the well-posedness of generalized doubly reflected BSDEs (GDRBSDE for short) with jumps under weaker assumptions on the data. In particular, we study the existence of a solution for a one-dimensional GDRBSDE with jumps when the terminal condition is only measurable with respect to the related filtration and when the coefficient has general stochastic quadratic growth. We also show, in a suitable framework, the connection between our class of backward stochastic differential equations and risk sensitive zero-sum game. In chapter 3, we investigate a general class of fully coupled mean field forward-backward under weak monotonicity conditions without assuming any non-degeneracy assumption on the forward equation. We derive existence and uniqueness results under two different sets of conditions based on proximation schema weither on the forward or the backward equation. Later, we give an application for storage in smart grids