Littérature scientifique sur le sujet « Equation of state, carbon, shock waves »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Equation of state, carbon, shock waves ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Equation of state, carbon, shock waves"

1

Nannan, Nawin R., Corrado Sirianni, Tiemo Mathijssen, Alberto Guardone et Piero Colonna. « The admissibility domain of rarefaction shock waves in the near-critical vapour–liquid equilibrium region of pure typical fluids ». Journal of Fluid Mechanics 795 (14 avril 2016) : 241–61. http://dx.doi.org/10.1017/jfm.2016.197.

Texte intégral
Résumé :
Application of the scaled fundamental equation of state of Balfour et al. (Phys. Lett. A, vol. 65, 1978, pp. 223–225) based upon universal critical exponents, demonstrates that there exists a bounded thermodynamic domain, located within the vapour–liquid equilibrium region and close to the critical point, featuring so-called negative nonlinearity. As a consequence, rarefaction shock waves with phase transition are physically admissible in a limited two-phase region in the close proximity of the liquid–vapour critical point. The boundaries of the admissibility region of rarefaction shock waves are identified from first-principle conservation laws governing compressible flows, complemented with the scaled fundamental equations. The exemplary substances considered here are methane, ethylene and carbon dioxide. Nonetheless, the results are arguably valid in the near-critical state of any common fluid, namely any fluid whose molecular interactions are governed by short-range forces conforming to three-dimensional Ising-like systems, including, e.g. water. Computed results yield experimentally feasible admissible rarefaction shock waves generating a drop in pressure from 1 to 6 bar and pre-shock Mach numbers exceeding 1.5.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Elperin, I., O. Igra et G. Ben-Dor. « Analysis of Normal Shock Waves in a Carbon Particle-Laden Oxygen Gas ». Journal of Fluids Engineering 108, no 3 (1 septembre 1986) : 354–59. http://dx.doi.org/10.1115/1.3242586.

Texte intégral
Résumé :
The propagation of a normal shock wave into a quiescent oxygen gas seeded with carbon particles is studied. Due to the elevated postshock temperature the carbon particles ignite and burn until they disappear. For evaluating the effect of the burning carbon particles on the postshock-wave flow field, i.e., the relaxation zone, the conservation equations for a steady one-dimensional reactive suspension flow are formulated and solved numerically. The solution was repeated for a similar inert suspension flow. Comparing the two solutions revealed that the carbon burning has a major effect on the suspension properties in the relaxation zone and on the eventually reached postshock equilibrium state. For example, much higher temperatures and velocities are obtained in the reactive suspension while the pressure is lower than in a similar inert case. Longer relaxation zones are obtained for the reactive suspension.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nagayama, Kunihito. « Grueneisen Equation of State and Shock Waves. » REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 4, no 2 (1995) : 118–27. http://dx.doi.org/10.4131/jshpreview.4.118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Khishchenko, K. V. « Equation of state for indium in shock waves ». Journal of Physics : Conference Series 1385 (novembre 2019) : 012002. http://dx.doi.org/10.1088/1742-6596/1385/1/012002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gu, Yuan, Sizu Fu, Jiang Wu, Songyu Yu, Yuanlong Ni et Shiji Wang. « Equation of state studies at SILP by laser-driven shock waves ». Laser and Particle Beams 14, no 2 (juin 1996) : 157–69. http://dx.doi.org/10.1017/s0263034600009915.

Texte intégral
Résumé :
The experimental progress of laser equation of state (EOS) studies at Shanghai Institute of Laser Plasma (SILP) is discussed in this paper. With a unique focal system, the uniformity of the laser illumination on the target surface is improved and a laser-driven shock wave with good spatial planarity is obtained. With an inclined aluminum target plane, the stability of shock waves are studied, and the corresponding thickness range of the target of laser-driven shock waves propagating steadily are given. The shock adiabats of Cu, Fe, SiO2 are experimentally measured. The pressure in the material is heightened remarkably with the flyer increasing pressure, and the effect of the increasing pressure is observed. Also, the high-pressure shock wave is produced and recorded in the experimentation of indirect laser-driven shock waves with the hohlraum target.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lifits, S. A., S. I. Anisimov et J. Meyer-ter-Vehn. « Shock Waves produced by Impulsive Load : Equation of State Effects ». Zeitschrift für Naturforschung A 47, no 3 (1 mars 1992) : 453–59. http://dx.doi.org/10.1515/zna-1992-0301.

Texte intégral
Résumé :
Abstract A numerical study of the flow after impulsive load of a plane material surface is carried out. It is shown that the flow is asymptotically self-similar provided one can neglect the cold components in the equation of state. In this case the effective exponent s(t) = d l n (X s) / d ln(t), derived from the shock trajectory Xs (t) does not depend on the initial pressure pulse and approaches the exponent α of the self-similar problem for time t →∞. For equations of state containing a cold pressure term, s (t) is larger than α and changes non-monotonically with time. Some features of the flow related to the presence of cold components in pressure and internal energy are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abdulazeem, Mohamed. « Condensed media shock waves and detonations : equation of state and performance ». High Temperatures-High Pressures 30, no 4 (1998) : 387–422. http://dx.doi.org/10.1068/htrt121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Khishchenko, K. V. « Equation of state for potassium in shock waves at high pressures ». Journal of Physics : Conference Series 946 (janvier 2018) : 012082. http://dx.doi.org/10.1088/1742-6596/946/1/012082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Khishchenko, Konstantin V. « Equation of State for Bismuth at High Energy Densities ». Energies 15, no 19 (26 septembre 2022) : 7067. http://dx.doi.org/10.3390/en15197067.

Texte intégral
Résumé :
The purpose of this work is to describe the thermodynamic properties of bismuth in a broad scope of mechanical and thermal effects. A model of the equation of state in a closed form of the functional relationship between pressure, specific volume, and specific internal energy is developed. A new expression is proposed for the internal energy of a zero-temperature isotherm in a wide range of compression ratios, which has asymptotics to the Thomas–Fermi model with corrections. Based on the new model, an equation of state for bismuth in the region of body-centered cubic solid and liquid phases is constructed. The results of calculating the thermodynamic characteristics of these condensed phases with the new EOS are compared with the available experimental data for this metal in waves of shock compression and isentropic expansion. The parameters of shock waves in air obtained earlier by unloading shock-compressed bismuth samples are reconsidered. The newly developed equation of state can be used in modeling various processes in this material at high energy densities.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kouremenos, D. A., et K. A. Antonopoulos. « Real gas normal shock waves with the redlich-kwong equation of state ». Acta Mechanica 76, no 3-4 (mars 1989) : 223–33. http://dx.doi.org/10.1007/bf01253581.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Equation of state, carbon, shock waves"

1

REDAELLI, RENATO. « Ultrashort - high intensity laser matter interaction studies ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/7734.

Texte intégral
Résumé :
Synopsis My thesis work concerns the study of plasmas produced by high intensity lasers (IL 1014 W/cm2). More precisely, it addresses the study of the properties of strongly compressed materials (equations of state - EOS - in regimes of pressures of tens of Mbar). I have tried to address the physics of laser-plasma interactions in a comprehensive way, emphasizing the correlation between various phenomena. The theoretical part is based on a monodimensional analytical description of the plasma created by direct laser irradiation of the target. Such description takes into account the absorption of laser light, the transport of energy and the plasma hydrodynamics. The various regions of the produced laser plasmas are dealt in details: the plasma corona characterized by a very low density of the expanding plasma, the conduction region between the plasma corona and the shocked material, the region compressed by the shock. In this way, I could also estimate the shock pressure (identified with the ablation pressure). The experimental part is mainly devoted to the study of EOS of low density plastic materials (foams). The measurements, which are presented, are of interest because this kind of material may have important applications in experiments with shock waves (ICF, EOS) and for improving the hydrodynamic behaviour of the plasma. These were the first measurements performed at pressures higher than 3 Mbar for such low densities (~ 100 mg/cm3). I also present other experiments in my thesis, one of which is the "Polarimetric detection of laser induced ultra-short magnetic pulses in overdense plasma". This part was performed during a 6 months visit at Tata Institute of Fundamental Research in Mumbai, India. The interaction of intense (~1016 Wcm-2), sub picosecond pulses with solid targets can generate highly directional jets of hot electrons. These electrons can propagate in the solid along with the counter propagating return shielding currents. The spontaneous magnetic field that is generated by these currents, captures in its time evolution, important information about the dynamics of the complex transport processes. By using a two pulse pump-probe polarimetric technique the temporal evolution of multi megagauss magnetic fields is measured for optically polished BK7 glass targets, each coated with a thin layer of either copper or silver. A simple model is then used for explaining the observations and for deducing quantitative information about the transport of hot electrons.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Thomas, Claire Waller. « Liquid Silicate Equation of State : Using Shock Waves to Understand the Properties of the Deep Earth ». Thesis, 2013. https://thesis.library.caltech.edu/7616/7/Abstract_CWThomas.pdf.

Texte intégral
Résumé :

The equations of state (EOS) of several geologically important silicate liquids have been constrained via preheated shock wave techniques. Results on molten Fe2SiO4 (fayalite), Mg2SiO4 (forsterite), CaFeSi2O6 (hedenbergite), an equimolar mixture of CaAl2Si2O8-CaFeSi2O6 (anorthite-hedenbergite), and an equimolar mixture of CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6(anorthite-hedenbergite-diopside) are presented. This work represents the first ever direct EOS measurements of an iron-bearing liquid or of a forsterite liquid at pressures relevant to the deep Earth (> 135 GPa). Additionally, revised EOS for molten CaMgSi2O6 (diopside), CaAl2Si2O8 (anorthite), and MgSiO3 (enstatite), which were previously determined by shock wave methods, are also presented.

The liquid EOS are incorporated into a model, which employs linear mixing of volumes to determine the density of compositionally intermediate liquids in the CaO-MgO-Al2O3-SiO2-FeO major element space. Liquid volumes are calculated for temperature and pressure conditions that are currently present at the core-mantle boundary or that may have occurred during differentiation of a fully molten mantle magma ocean.

The most significant implications of our results include: (1) a magma ocean of either chondrite or peridotite composition is less dense than its first crystallizing solid, which is not conducive to the formation of a basal mantle magma ocean, (2) the ambient mantle cannot produce a partial melt and an equilibrium residue sufficiently dense to form an ultralow velocity zone mush, and (3) due to the compositional dependence of Fe2+ coordination, there is a threshold of Fe concentration (molar XFe ≤ 0.06) permitted in a liquid for which its density can still be approximated by linear mixing of end-member volumes.

Styles APA, Harvard, Vancouver, ISO, etc.
3

Buxton, Rebecca Koopmannm Gary H. Hambric Stehphen A. « The effects of porous sea bottoms on the propagation of underwater shock waves using the P- ? equation of state ». 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-3873/index.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Equation of state, carbon, shock waves"

1

Selected topics in shock wave physics and equation of state modeling. Singapore : World Scientific, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Greiner, Walter. The Nuclear Equation of State : Part A : Discovery of Nuclear Shock Waves and the EOS. Boston, MA : Springer US, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Greiner, Walter. The Nuclear Equation of State : Part A : Discovery of Nuclear Shock Waves and the EOS. Springer, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shock wave data for minerals. [Washington, D.C : National Aeronautics and Space Administration, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

The Nuclear Equation of State : Part A : Discovery of Nuclear Shock Waves and the EOS (NATO Science Series : B:). Springer, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Equation of state, carbon, shock waves"

1

Hama, J., et K. Suito. « Equation of state of H2O under ultra-high pressure ». Dans Shock Waves, 469–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9_73.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nagayama, K., et T. Murakami. « Grüneisen equation of state for solids and solution of the Riemann problem ». Dans Shock Waves, 453–58. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9_70.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jevais, J. R., et G. Zerah. « A New Fluid Integral Equation Application to the Equation of State of Xenon ». Dans Shock Waves in Condensed Matter, 119–23. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sikka, S. K. « Shock Hugoniot Equation of State - Electron Band Theory Approach ». Dans Shock Waves in Condensed Matter, 71–84. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schopper, Erwin. « Early History of Shock Waves in Heavy Ion Collisions (The Frankfurt Group) ». Dans The Nuclear Equation of State, 427–46. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0583-5_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ross, M., H. K. Mao, P. M. Bell et J. A. Xu. « The Equation of State of Dense Argon ; A Comparison of Shock and Static Studies ». Dans Shock Waves in Condensed Matter, 131–34. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Weixin, Li. « Simplified Equation of State P = P(ρ,E) and P = P(ρ,T) for Condensed Matter ». Dans Shock Waves in Condensed Matter, 167–73. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Khishchenko, K. V. « Equation of State and Phase Transformations of Zirconium in Shock Waves ». Dans 31st International Symposium on Shock Waves 1, 987–92. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bethe, H. A. « On the Theory of Shock Waves for an Arbitrary Equation of State ». Dans Classic Papers in Shock Compression Science, 421–95. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2218-7_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Aksenov, Alexey G. « A Godunov-Type Method for a Multi-temperature Plasma with Strong Shock Waves and a General Equation of State ». Dans Applied Mathematics and Computational Mechanics for Smart Applications, 115–25. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4826-4_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Equation of state, carbon, shock waves"

1

Fritz, Joseph N. « Waves at high-pressure and explosive-products equation of state ». Dans Shock compression of condensed matter. AIP, 2000. http://dx.doi.org/10.1063/1.1303465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Averin, A. B., V. V. Dremov, S. I. Samarin et A. T. Sapozhnikov. « Equation of state and phase diagram of carbon ». Dans Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP, 1996. http://dx.doi.org/10.1063/1.50644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Khishchenko, K. V. « Equation of State and phase Transitions of Scandium in Shock Waves ». Dans Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore : Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0487-cd.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Khishchenko, Konstantin V. « Shock Compression, Adiabatic Expansion and Multi-phase Equation of State of Carbon ». Dans Shock Compression of Condensed Matter - 2001 : 12th APS Topical Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1483648.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Velizhanin, Kirill A., et Joshua D. Coe. « Automated fitting of a semi-empirical multiphase equation of state for carbon ». Dans SHOCK COMPRESSION OF CONDENSED MATTER - 2019 : Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000798.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jung, J. « Helmholtz Free Energy Equation of State Applied to Carbon at Megabar Pressures ». Dans SHOCK COMPRESSION OF CONDENSED MATTER - 2005 : Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2006. http://dx.doi.org/10.1063/1.2263274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shaw, M. Sam. « An equation of state for detonation products incorporating small carbon clusters ». Dans The tenth American Physical Society topical conference on shock compression of condensed matter. AIP, 1998. http://dx.doi.org/10.1063/1.55636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Howard, W. M. « Calculation of Chemical Detonation Waves with Hydrodynamics and a Thermochemical Equation of State ». Dans Shock Compression of Condensed Matter - 2001 : 12th APS Topical Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1483506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shaw, M. Sam. « A theoretical equation of state for detonation products with chemical equilibrium composition of the surface of small carbon clusters ». Dans Shock compression of condensed matter. AIP, 2000. http://dx.doi.org/10.1063/1.1303464.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Katko, B., J. Chan, M. Gerdes, V. Trexel, V. Eliasson, V. Zheng, C. McGuire et B. Lawlor. « Blast Wave Loading of Carbon Fiber Reinforced Polymer Plates in a Compartmentalized Setup and the Structural Health State of the Plates Post-Blast ». Dans Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore : Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0461-cd.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie