Littérature scientifique sur le sujet « Equation de Lindblad »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Equation de Lindblad ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Equation de Lindblad"
Tarasov, Vasily E. « Quantum Maps with Memory from Generalized Lindblad Equation ». Entropy 23, no 5 (28 avril 2021) : 544. http://dx.doi.org/10.3390/e23050544.
Texte intégralFagnola, Franco, et Carlos M. Mora. « Basic Properties of a Mean Field Laser Equation ». Open Systems & ; Information Dynamics 26, no 03 (septembre 2019) : 1950015. http://dx.doi.org/10.1142/s123016121950015x.
Texte intégralISAR, A., A. SANDULESCU, H. SCUTARU, E. STEFANESCU et W. SCHEID. « OPEN QUANTUM SYSTEMS ». International Journal of Modern Physics E 03, no 02 (juin 1994) : 635–714. http://dx.doi.org/10.1142/s0218301394000164.
Texte intégralPearle, Philip. « Simple derivation of the Lindblad equation ». European Journal of Physics 33, no 4 (27 avril 2012) : 805–22. http://dx.doi.org/10.1088/0143-0807/33/4/805.
Texte intégralKostyakov, I. V., V. V. Kuratov et N. A. Gromov. « Lie algebra contractions and the Lindblad equation ». Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences 6 (2021) : 36–41. http://dx.doi.org/10.19110/1994-5655-2021-6-36-41.
Texte intégralKarabanov, A. A. « Symmetry reductions of Lindblad equations – simple examples and applications ». Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences 6 (2021) : 49–52. http://dx.doi.org/10.19110/1994-5655-2021-6-49-52.
Texte intégralFUJII, KAZUYUKI. « ALGEBRAIC STRUCTURE OF A MASTER EQUATION WITH GENERALIZED LINDBLAD FORM ». International Journal of Geometric Methods in Modern Physics 05, no 07 (novembre 2008) : 1033–40. http://dx.doi.org/10.1142/s0219887808003168.
Texte intégralVacchini, Bassano. « General structure of quantum collisional models ». International Journal of Quantum Information 12, no 02 (mars 2014) : 1461011. http://dx.doi.org/10.1142/s0219749914610115.
Texte intégralBinney, James. « Angle-action variables for orbits trapped at a Lindblad resonance ». Monthly Notices of the Royal Astronomical Society 495, no 1 (19 mai 2020) : 886–94. http://dx.doi.org/10.1093/mnras/staa092.
Texte intégralOu, Congjie, Yuho Yokoi et Sumiyoshi Abe. « Spin Isoenergetic Process and the Lindblad Equation ». Entropy 21, no 5 (17 mai 2019) : 503. http://dx.doi.org/10.3390/e21050503.
Texte intégralThèses sur le sujet "Equation de Lindblad"
Debierre, Vincent. « La fonction d'onde du photon en principe et en pratique ». Thesis, Ecole centrale de Marseille, 2015. http://www.theses.fr/2015ECDM0004/document.
Texte intégralDuring these three years we focused on several topics in quantum otpics and quantum electrodynamics. A central theme in our investigations is that of the photon wave function. Can quantum optics and quantum electrodynamics experiments be described simply, in position space, with the help of a wave function describing the photon(s) featured in the experiment ? The answer to that question is not quite obvious: the usual description of photons takes place in the reciprocal space of wave vectors. But these experiments call for a wave mechanical description in the position representation, as is done in quantum mechanics textbooks in situations featuring massive particles. Moreover, in a recent experiment [1], single photon trajectories through a Young two-slit setup have been observed. In order to try and describe these trajectories formally, it is natural to build a wave mechanical formalism for photons. We therefore studied in detail the formal construction of the photon wave function, an object which was little studied until the 1990s. We also studied the properties of the photon wave function in the presence of sources.To do that, we considered several open (interacting) quantum systems. We saw that there exists in principle an infinite number of possibilities when defining the photon wave function. We emphasised several criteria on the basis of which it appears that only three choices for the wave function are interesting. One of them coincides with an object introduced and used by Glauber [2] to study light detection andthe correlations of the electromagnetic field in the quantum regime. We also saw that, in the absence of sources, the propagation equation for a single photon is formally equivalent to Maxwell’s equations. At low photon numbers, the wave function formalism can be very useful. We adapted it to interacting systems,first, to cavity quantum electrodynamics (QED) [3], in particular to the experiments carried out by Serge Haroche’s group [4]. We proposed a simple model to describe photons in QED cavities. With this model, and with the helpof the photon wave function, we studied the propagation of photons escaping a cavity. We also constructed the Lindblad master equation without introducing nonunitary quantum jumps (also see [5]). We finally investigated the spacetime evolution of a photon which is emitted during the decay of an atomic electron. After having carefully studied the dynamics of the electronic decay, especially at very short times [6, 7], we set out to describe the emitted electromagnetic field as rigorously as possible. This emitted field, surprisingly, does not evolve causally. Though this is not entirely unexpected in view of Hegerfeldt’s theorem, which states [8] that causality is impossible for quantum systems which are described by a Hamiltonian with a spectrum which is bounded by below, we identified [9] two other sources of non causality. One of them was predicted qualitatively by Shirokov [10], while the other one, which is completely new as far as we can tell, is still to be better understood
Lindblad, Petersen Oliver [Verfasser], et Christian [Akademischer Betreuer] Bär. « The Cauchy problem for the linearised Einstein equation and the Goursat problem for wave equations / Oliver Lindblad Petersen ; Betreuer : Christian Bär ». Potsdam : Universität Potsdam, 2018. http://d-nb.info/1219149489/34.
Texte intégralZuo, Xingdong. « Derivation of the Lindblad Equation for Open Quantum Systems and Its Application to Mathematical Modeling of the Process of Decision Making ». Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-38711.
Texte intégralPinna, Lorenzo. « On the controllability of the quantum dynamics of closed and open systems ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX017/document.
Texte intégralWe investigate the controllability of quantum systems in two differentsettings: the standard 'closed' setting, in which a quantum system is seen as isolated, the control problem is formulated on the Schroedinger equation; the open setting that describes a quantum system in interaction with a larger one, of which just qualitative parameters are known, by means of the Lindblad equation on states.In the context of closed systems we focus our attention to an interesting class ofmodels, namely the spin-boson models. The latter describe the interaction between a 2-level quantum system and finitely many distinguished modes of a bosonic field. We discuss two prototypical examples, the Rabi model and the Jaynes-Cummings model, which despite their age are still very popular in several fields of quantum physics. Notably, in the context of cavity Quantum Electro Dynamics (C-QED) they provide an approximate yet accurate description of the dynamics of a 2-level atom in a resonant microwave cavity, as in recent experiments of S. Haroche. We investigate the controllability properties of these models, analyzing two different types of control operators acting on the bosonic part, corresponding -in the application to cavity QED- to an external electric and magnetic field, respectively. We review some recent results and prove the approximate controllability of the Jaynes-Cummings model with these controls. This result is based on a spectral analysis exploiting the non-resonances of the spectrum. As far as the relation between the Rabi andthe Jaynes-Cummings Hamiltonians concerns, we treat the so called rotating waveapproximation in a rigorous framework. We formulate the problem as an adiabaticlimit in which the detuning frequency and the interaction strength parameter goes to zero, known as the weak-coupling regime. We prove that, under certain hypothesis on the ratio between the detuning and the coupling, the Jaynes-Cumming and the Rabi dynamics exhibit the same behaviour, more precisely the evolution operators they generate are close in norm.In the framework of open quantum systems we investigate the controllability ofthe Lindblad equation. We consider a control acting adiabatically on the internal part of the system, which we see as a degree of freedom that can be used to contrast the action of the environment. The adiabatic action of the control is chosen to produce a robust transition. We prove, in the prototype case of a two-level system, that the system approach a set of equilibrium points determined by the environment, i.e. the parameters that specify the Lindblad operator. On that set the system can be adiabatically steered choosing a suitable control. The analysis is based on the application of geometrical singular perturbation methods
Gozzi, Riccardo. « Open dynamics of su(3) quantum systems ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12395/.
Texte intégralBrasil, Carlos Alexandre. « Descrição de medidas em sistemas de 2 níveis pela equação de Lindblad com inclusão de ambiente ». Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-12032012-080819/.
Texte intégralThe aim of this work is to explore a model for finite-time measurement based on the Lindblad equation, with analysis of a system consisting of a 2-level system coupled to a thermal reservoir. We assume a Markovian measuring device and, therefore, use a Lindbladian description for the measurement dynamics. For studying the case of noise produced by a non-Markovian environment, whose definition does not include the measuring apparatus, we use the Redfield approach to the interaction between system and environment. In the present hybrid theory, to trace out the environmental degrees of freedom, we introduce an analytic method based on superoperator algebra and Nakajima-Zwanzig superoperators. We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. We have tested the validity of the analytical predictions against an exact numerical approach. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.
Bystrik, Y. « Driven anharmonic oscillator : classical and quantum analysis ». Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46814.
Texte intégralRibeiro, Wellington Luiz. « Evolution of a 1D bipartite fermionic chain under in?uence of a phenomenological dephasing ». reponame:Repositório Institucional da UFABC, 2018.
Trouver le texte intégralDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, Santo André, 2018.
Em sistemas microscópicos, grandezas como calor e trabalho devem ser tratadas como variáveis aleatórias. Neste trabalho foram estudados os fluxos de calor e de partículas entre dois sistemas unidimensionais fermiônicos A eB, inicialmente preparados separadamente em equilíbrio térmico com reservatórios de calor e partículas preparados a diferentes temperaturas e diferentes potenciais químicos. Calculando a evolução da matriz densidade, foram analisadas as implicações da presença de um ruído de dephasing no sistema, tais como a termalização, a produção de entropia e a evolução da informação mútua como uma forma de analisar a correlação entre os sistemas. Além disso, foi estudado também uma forma do teorema de flutuação do calor no caso onde há fluxo de partículas.
In microscopic systems, heat and work must be treated as random variables. In this work I studied the fluxes of heat and particles between two unidimentional fermionic systems A and B, initially prepared in thermal equilibrium with a reservoir of particles and heat, kept at diferent temperatures and chemical potentials. Computing the evolution of the density matrix, the implications of the presence of a dephasing noise in the system were analyzed, such as thermalization, entropy production and the evolution of mutual information as a way to analyze the correlation between the systems. Moreover, a shape for fluctuation theorems of the heat in the case where there is also a ?ux of particles and its validity was also studied.
Ermakova, Natalia. « Signatures of topological phases in an open Kitaev chain ». Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300177.
Texte intégralDet finns fysiska system som visar topologiska egenskaper i form av topologiska invarianter,som ändras inte så länge systemet genomgår ändringar som inte stängerHamiltonianens energigap. I det här arbetet undersöker vi ett exempel av ett systemmed topologiska egenskaper — en Kitaev kedja. Denna modell är studerat närden är kopplad till en omgivning. Vi undersöker kopplingens påverkan på systemetstopologi och vi försöker hitta tecken på topologiska faser i systemets dynamik. Vianvänder Lindblads ekvation definierat i tredje kvantiserings formalism för att studerasystemets tidsutveckling numeriskt, genom att använda Eulers metod. Vi upptäckeratt det finns skillnader i tidsutveckling av kvantsammanflätningsspektrumav häften av kedjan som beror på systems topologiska fas. Om systemet genomgåren kvantsläckning från den triviala till den topologiska fasen, kommer det finnas korsningari kvantsammanflätningensspektrum som uppstår under dess tidsutveckling.Dessutom studerar vi de topologiska faserna när det finns oordning i systemet. Viundersöker topologiska fasernas stabilitet mot oordning och upptäcker att en svagoordning påverkar inte de topologika faserna. Dessutom, genom att studera den minstakvantsammanflätningsspektrumsgap upptäcker vi att en starkare oordning ledertill kvantsammanflätningsspektrumskorsningar att vara mindre sannolika i den topologiskafasen och mer sannolika i den triviala fasen.
Schlesinger, Martin. « Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82729.
Texte intégralIn dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden. Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet. Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen. Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht. Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt
Livres sur le sujet "Equation de Lindblad"
Kavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech et Fabrice P. Laussy. Quantum description of light–matter coupling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0005.
Texte intégralChapitres de livres sur le sujet "Equation de Lindblad"
Haba, Zbigniew. « Lindblad equation and stochastic Schrödinger equation ». Dans Feynman Integral and Random Dynamics in Quantum Physics, 185–249. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4716-3_12.
Texte intégralSoto-Eguibar, Francisco, Braulio Misael Villegas-Martínez et Héctor Manuel Moya-Cessa. « The Matrix Perturbation Method for the Lindblad Master Equation ». Dans The Matrix Perturbation Method in Quantum Mechanics, 137–55. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-48546-6_6.
Texte intégralChattah, A. Karina, et Manuel O. Cáceres. « Computing the quantum Boltzmann equation from a Kossakowski-Lindblad generator ». Dans Nonlinear Phenomena and Complex Systems, 183–95. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2149-7_11.
Texte intégralBertlmann, Reinhold A., et Nicolai Friis. « Open Quantum Systems, Decoherence, Atom-Field Coupling ». Dans Modern Quantum Theory, 726–57. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780199683338.003.0022.
Texte intégralEichler, Alexander, et Oded Zilberberg. « From Closed to Open Quantum Systems ». Dans Classical and Quantum Parametric Phenomena, 132–42. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192862709.003.0010.
Texte intégralActes de conférences sur le sujet "Equation de Lindblad"
Riesch, Michael, Alek Pikl et Christian Jirauschek. « Completely Positive Trace Preserving Methods for the Lindblad Equation ». Dans 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2020. http://dx.doi.org/10.1109/nusod49422.2020.9217670.
Texte intégralRibeiro, P., et V. R. Vieira. « NON-MARKOVIAN EFFECTS IN THE LINDBLAD MASTER EQUATION APPROACH TO ELECTRONIC TRANSPORT ». Dans 11th International School on Theoretical Physics. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814740371_0005.
Texte intégralAnastopoulos, C., S. Shresta et B. L. Hu. « Quantum Entanglement under Non-Markovian Dynamics of Two Qubits Interacting with a Common Electromagnetic Field* ». Dans Workshop on Entanglement and Quantum Decoherence. Washington, D.C. : Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs2.
Texte intégralAzouit, R., A. Sarlette et P. Rouchon. « Adiabatic elimination for open quantum systems with effective Lindblad master equations ». Dans 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798963.
Texte intégralRouchon, Pierre, et Alain Sarlette. « Contraction and stability analysis of steady-states for open quantum systems described by Lindblad differential equations ». Dans 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760928.
Texte intégralRapports d'organisations sur le sujet "Equation de Lindblad"
Spahn, G. Parallel-in-Time Simulation of Lindblad's Equation. Office of Scientific and Technical Information (OSTI), août 2020. http://dx.doi.org/10.2172/1647923.
Texte intégral