Sommaire
Littérature scientifique sur le sujet « Epigenome editors »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Epigenome editors ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Epigenome editors"
Syding, Linn Amanda, Petr Nickl, Petr Kasparek et Radislav Sedlacek. « CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases : A Review ». Cells 9, no 4 (16 avril 2020) : 993. http://dx.doi.org/10.3390/cells9040993.
Texte intégralNakamura, Muneaki, Alexis E. Ivec, Yuchen Gao et Lei S. Qi. « Durable CRISPR-Based Epigenetic Silencing ». BioDesign Research 2021 (1 juillet 2021) : 1–8. http://dx.doi.org/10.34133/2021/9815820.
Texte intégralFang, Yongxing, Wladislaw Stroukov, Toni Cathomen et Claudio Mussolino. « Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors ». International Journal of Molecular Sciences 21, no 3 (25 janvier 2020) : 795. http://dx.doi.org/10.3390/ijms21030795.
Texte intégralRoman Azcona, Maria Silvia, Yongxing Fang, Antonio Carusillo, Toni Cathomen et Claudio Mussolino. « A versatile reporter system for multiplexed screening of effective epigenome editors ». Nature Protocols 15, no 10 (4 septembre 2020) : 3410–40. http://dx.doi.org/10.1038/s41596-020-0380-y.
Texte intégralWillyard, Cassandra. « The epigenome editors : How tools such as CRISPR offer new details about epigenetics ». Nature Medicine 23, no 8 (août 2017) : 900–903. http://dx.doi.org/10.1038/nm0817-900.
Texte intégralO’Geen, Henriette, Marketa Tomkova, Jacquelyn A. Combs, Emma K. Tilley et David J. Segal. « Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing ». Nucleic Acids Research 50, no 6 (2 mars 2022) : 3239–53. http://dx.doi.org/10.1093/nar/gkac123.
Texte intégralPsatha, Nikoletta, Kiriaki Paschoudi, Anastasia Papadopoulou et Evangelia Yannaki. « In Vivo Hematopoietic Stem Cell Genome Editing : Perspectives and Limitations ». Genes 13, no 12 (27 novembre 2022) : 2222. http://dx.doi.org/10.3390/genes13122222.
Texte intégralDehshahri, Ali, Alessio Biagioni, Hadi Bayat, E. Hui Clarissa Lee, Mohammad Hashemabadi, Hojjat Samareh Fekri, Ali Zarrabi, Reza Mohammadinejad et Alan Prem Kumar. « Editing SOX Genes by CRISPR-Cas : Current Insights and Future Perspectives ». International Journal of Molecular Sciences 22, no 21 (20 octobre 2021) : 11321. http://dx.doi.org/10.3390/ijms222111321.
Texte intégralSzyf, Moshe. « The Epigenome : Molecular Hide and Seek. Stephan Beck and Alexander Olek, editors. Weinheim, Germany : Wiley-VCH GmbH Co. KGaA, 2003, 188 pp., $35.00, softcover. ISBN 3-527-30494-0. » Clinical Chemistry 49, no 9 (1 septembre 2003) : 1566–67. http://dx.doi.org/10.1373/49.9.1566.
Texte intégralBrane, Andrew, Madeline Sutko et Trygve O. Tollefsbol. « p21 Promoter Methylation Is Vital for the Anticancer Activity of Withaferin A ». International Journal of Molecular Sciences 26, no 3 (30 janvier 2025) : 1210. https://doi.org/10.3390/ijms26031210.
Texte intégralThèses sur le sujet "Epigenome editors"
Fontana, Letizia. « Genome and epigenome editing approaches to treat β-hemoglobinopathies ». Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5230.
Texte intégralB-thalassemia and sickle cell disease (SCD) result from mutations that affect the synthesis or structure of adult hemoglobin. Historically, allogeneic hematopoietic stem cell (HSC) transplantation from a compatible donor was the only curative treatment. Transplantation of autologous, genetically modified HSCs offers a promising therapeutic alternative for patients lacking a suitable donor. The clinical severity in b-hemoglobinopathies is mitigated by co-inheritance of hereditary persistence of fetal hemoglobin (HPFH), a benign condition characterized by mutations occurring in the genes encoding the fetal y-globin chains, which lead to increased fetal hemoglobin (HbF, a2y2) expression, which can rescue the b-thalassemic and SCD phenotypes. HbF reactivation can be achieved by down-regulating BCL11A, encoding a key repressor of HbF. A CRISPR/Cas9 strategy targeting the GATA1 binding site (BS) within the +58-kb erythroid-specific enhancer of BCL11A has recently been approved as the first gene-editing therapy for b-thalassemia and SCD. Indeed, the targeting of the BCL11A erythroid-specific enhancer led to an efficient reduction of BCL11A in the erythroid cells, without impacting the differentiation of HSPCs in the other cell lineages. However, site-specific nucleases induce double strand breaks (DSBs), posing significant risks, such apoptosis and generation of large genomic rearrangements. In addition, to obtain an adequate number of corrected cells to transplant, several collections of HSCs are necessary to compensate for the cell loss due to DSB-induced apoptosis. Finally, the clinical study showed variability in the extent of HbF reactivation, still high HbS levels and modest correction of ineffective erythropoiesis. Novel CRISPR/Cas9 derived tools are currently available and can be used to develop therapeutic strategies associated with a low risk of DSB generation and increased HbF expression. In this project, we intend to develop universal, safe and efficacious therapeutic strategies for b-hemoglobinopathies aimed at modifying HSCs using base editors (BEs) and epigenome editors to reactivate HbF expression in their erythroid progeny. BEs are a CRISPR-Cas9-based genome editing technology that allows the introduction of point mutations with little DSB generation. In this work we used this technology to inactivate the GATA1 or the ATF4 transcriptional activator BS in the +58-kb and +55-kb BCL11A erythroid-specific enhancers through the insertion of point mutations. In particular, to reach levels of HbF sufficient to rescue the sickling phenotype, we performed simultaneous targeting of the two BS, achieving similar HbF levels compared to CRISPR/Cas9 nuclease-based approach. Additionally, we showed that BEs generated fewer DSBs and genomic rearrangements compared to the CRISPR/Cas9 nuclease approach. In parallel, we developed a novel epigenome-editing strategy aimed at modulating gene expression without altering the DNA sequence (e.g. without generating DSBs). We designed two approaches to upregulate HbF expression: a first strategy targeting and activating the y-globin promoters and a second approach downregulating BCL11A by targeting its erythroid-specific enhancers. We first identified the epigenetic marks in these trans- and cis-regulatory regions that are associated with active or inactive transcription in adult versus fetal erythroid cells. Then we used epigenome editors to deposit active histone modifications at the y-globin promoters and remove inactive marks such as DNA methylation. In parallel, we decorated the BCL11A enhancers with inactive epigenetic marks. Preliminary results demonstrated y-globin reactivation using both strategies, though the effects diminished over time, indicating the need for further optimization. In conclusion, we proposed two different editing approaches that allow to reduce DSB-associate issues as strategies to treat b-hemoglobinopathies
Chapitres de livres sur le sujet "Epigenome editors"
Sen, Dilara, et Albert J. Keung. « Designing Epigenome Editors : Considerations of Biochemical and Locus Specificities ». Dans Methods in Molecular Biology, 65–87. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_3.
Texte intégralYagci, Z. Begum, Gautami R. Kelkar, Tyler J. Johnson, Dilara Sen et Albert J. Keung. « Designing Epigenome Editors : Considerations of Biochemical and Locus Specificities ». Dans Methods in Molecular Biology, 23–55. New York, NY : Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_2.
Texte intégralNoviello, Gemma, et Rutger A. F. Gjaltema. « Fine-Tuning the Epigenetic Landscape : Chemical Modulation of Epigenome Editors ». Dans Methods in Molecular Biology, 57–77. New York, NY : Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4051-7_3.
Texte intégralKroll, Carolin, et Philipp Rathert. « Stable Expression of Epigenome Editors via Viral Delivery and Genomic Integration ». Dans Methods in Molecular Biology, 215–25. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7774-1_11.
Texte intégral