Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Enzymologie structurale.

Articles de revues sur le sujet « Enzymologie structurale »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Enzymologie structurale ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pearson, Arwen R., Andrea Mozzarelli et Gian Luigi Rossi. « Microspectrophotometry for structural enzymology ». Current Opinion in Structural Biology 14, no 6 (décembre 2004) : 656–62. http://dx.doi.org/10.1016/j.sbi.2004.10.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Einsle, Oliver, et Douglas C. Rees. « Structural Enzymology of Nitrogenase Enzymes ». Chemical Reviews 120, no 12 (15 juin 2020) : 4969–5004. http://dx.doi.org/10.1021/acs.chemrev.0c00067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schneider, Gunter, et Ylva Lindqvist. « Structural enzymology of biotin biosynthesis ». FEBS Letters 495, no 1-2 (19 avril 2001) : 7–11. http://dx.doi.org/10.1016/s0014-5793(01)02325-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Muretta, Joseph M., Yonggun Jun, Steven P. Gross, Jennifer Major, David D. Thomas et Steven S. Rosenfeld. « The structural kinetics of switch-1 and the neck linker explain the functions of kinesin-1 and Eg5 ». Proceedings of the National Academy of Sciences 112, no 48 (16 novembre 2015) : E6606—E6613. http://dx.doi.org/10.1073/pnas.1512305112.

Texte intégral
Résumé :
Kinesins perform mechanical work to power a variety of cellular functions, from mitosis to organelle transport. Distinct functions shape distinct enzymologies, and this is illustrated by comparing kinesin-1, a highly processive transport motor that can work alone, to Eg5, a minimally processive mitotic motor that works in large ensembles. Although crystallographic models for both motors reveal similar structures for the domains involved in mechanochemical transduction—including switch-1 and the neck linker—how movement of these two domains is coordinated through the ATPase cycle remains unknown. We have addressed this issue by using a novel combination of transient kinetics and time-resolved fluorescence, which we refer to as “structural kinetics,” to map the timing of structural changes in the switch-1 loop and neck linker. We find that differences between the structural kinetics of Eg5 and kinesin-1 yield insights into how these two motors adapt their enzymologies for their distinct functions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Buschiazzo, Alejandro, et Pedro M. Alzari. « Structural insights into sialic acid enzymology ». Current Opinion in Chemical Biology 12, no 5 (octobre 2008) : 565–72. http://dx.doi.org/10.1016/j.cbpa.2008.06.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Long, Tao, Erik W. Debler et Xiaochun Li. « Structural enzymology of cholesterol biosynthesis and storage ». Current Opinion in Structural Biology 74 (juin 2022) : 102369. http://dx.doi.org/10.1016/j.sbi.2022.102369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kupitz, Christopher, Jose L. Olmos, Mark Holl, Lee Tremblay, Kanupriya Pande, Suraj Pandey, Dominik Oberthür et al. « Structural enzymology using X-ray free electron lasers ». Structural Dynamics 4, no 4 (15 décembre 2016) : 044003. http://dx.doi.org/10.1063/1.4972069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Johnson, Louise N., et Gregory A. Petsko. « David Phillips and the origin of structural enzymology ». Trends in Biochemical Sciences 24, no 7 (juillet 1999) : 287–89. http://dx.doi.org/10.1016/s0968-0004(99)01423-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Patel, S., M. Martı́nez-Ripoll, Tom L. Blundell et A. Albert. « Structural Enzymology of Li+-sensitive/Mg2+-dependent Phosphatases ». Journal of Molecular Biology 320, no 5 (juillet 2002) : 1087–94. http://dx.doi.org/10.1016/s0022-2836(02)00564-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Schnell, Robert, et Gunter Schneider. « Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis ». Biochemical and Biophysical Research Communications 396, no 1 (mai 2010) : 33–38. http://dx.doi.org/10.1016/j.bbrc.2010.02.118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schneider, T. R., M. Agthe, I. Bento, G. Bourenkov, K. Kovalev, S. Panneerselvam, D. Von Stetten et S. L. Storm. « Structural enzymology on EMBL beamlines at PETRA III ». Acta Crystallographica Section A Foundations and Advances 78, a2 (23 août 2022) : a368. http://dx.doi.org/10.1107/s2053273322093664.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Fedor, Martha J. « Comparative Enzymology and Structural Biology of RNA Self-Cleavage ». Annual Review of Biophysics 38, no 1 (juin 2009) : 271–99. http://dx.doi.org/10.1146/annurev.biophys.050708.133710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kim, Robbert Q., Wendy A. Offen, Gideon J. Davies et Keith A. Stubbs. « Structural enzymology ofHelicobacter pylorimethylthioadenosine nucleosidase in the futalosine pathway ». Acta Crystallographica Section D Biological Crystallography 70, no 1 (31 décembre 2013) : 177–85. http://dx.doi.org/10.1107/s1399004713026655.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Schlichting, I. « Serial femtosecond crystallography provides new approaches to structural enzymology ». Acta Crystallographica Section A Foundations of Crystallography 68, a1 (7 août 2012) : s36. http://dx.doi.org/10.1107/s0108767312099308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Cioci, Gianluca, N. Cooper, T. Laffargue, S. Ladevèze, D. Guieysse, G. Potocki-Veronese, C. Moulis et M. Remaud-Siméon. « Structural enzymology for the synthesis and functionalization of biopolymers ». Acta Crystallographica Section A Foundations and Advances 80, a1 (26 août 2024) : e121-e121. https://doi.org/10.1107/s2053273324098784.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Chhaya, Urvish, et Snehal Ingale. « Micellar Enzymology- Chemistry and Applications ». Open Biotechnology Journal 10, no 1 (11 novembre 2016) : 326–34. http://dx.doi.org/10.2174/1874070701610010326.

Texte intégral
Résumé :
Enzymes in aqueous environment usually deal with purified enzyme preparations isolated from living matter which does not mimic real catalytic properties in vivo. Interaction of enzymes in nature takes place with different surfaces composed from lipid membranes or they get incorporated into biomembranes. Although Water is not a dominating component in the cytoplasm but plays a structural role by participating in the formation of biocatalytic complexes like glycoproteins. Water is needed to keep biocatalyst in active confirmation and hence plays very crucial role in biocatalytic reactions, activity and stability so that it can be used for various applications. This review focuses on composition, preparation properties and parameters which influence enzymes in reverse micelles and application of micellar enzymology to study protein chemistry, shifting equilibrium of various reactions, to recover various products by partition chromatography and bioremediation of chlorophenolic environmental pollutants.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Munro, Andrew W., et Nigel S. Scrutton. « Enzyme Mechanisms : Fast Reaction and Computational Approaches ». Biochemical Society Transactions 37, no 2 (20 mars 2009) : 333–35. http://dx.doi.org/10.1042/bst0370333.

Texte intégral
Résumé :
Now, more than ever, enzymology and its development can be considered of vital importance to the progression of the biological sciences. With an increase in the numbers of enzymes being identified from genomic studies, enzymology is key to defining the structural and functional properties of these enzymes in order to establish their mechanisms of action and how they fit into metabolic networks. Along with the efforts of the bioinformaticians and systems biologists, such studies will ultimately lead to detailed descriptions of intricate biochemical pathways and allow identification of the most appropriate target enzymes for intervention in disease therapy. Thus the timing for the recent Biochemical Society Focused Meeting entitled ‘Enzyme Mechanisms: Fast Reaction and Computational Approaches’ was highly appropriate. The present paper represents an overview of this meeting, which was held at the Manchester Interdisciplinary Biocentre on 9–10 October 2008.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tsai, Shiou-Chuan (Sheryl). « The Structural Enzymology of Iterative Aromatic Polyketide Synthases : A Critical Comparison with Fatty Acid Synthases ». Annual Review of Biochemistry 87, no 1 (20 juin 2018) : 503–31. http://dx.doi.org/10.1146/annurev-biochem-063011-164509.

Texte intégral
Résumé :
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Chaganti, Lalith K., Shubhankar Dutta, Raja Reddy Kuppili, Mriganka Mandal et Kakoli Bose. « Structural modeling and role of HAX-1 as a positive allosteric modulator of human serine protease HtrA2 ». Biochemical Journal 476, no 20 (18 octobre 2019) : 2965–80. http://dx.doi.org/10.1042/bcj20190569.

Texte intégral
Résumé :
Abstract HAX-1, a multifunctional protein involved in cell proliferation, calcium homeostasis, and regulation of apoptosis, is a promising therapeutic target. It regulates apoptosis through multiple pathways, understanding of which is limited by the obscurity of its structural details and its intricate interaction with its cellular partners. Therefore, using computational modeling, biochemical, functional enzymology and spectroscopic tools, we predicted the structure of HAX-1 as well as delineated its interaction with one of it pro-apoptotic partner, HtrA2. In this study, three-dimensional structure of HAX-1 was predicted by threading and ab initio tools that were validated using limited proteolysis and fluorescence quenching studies. Our pull-down studies distinctly demonstrate that the interaction of HtrA2 with HAX-1 is directly through its protease domain and not via the conventional PDZ domain. Enzymology studies further depicted that HAX-1 acts as an allosteric activator of HtrA2. This ‘allosteric regulation’ offers promising opportunities for the specific control and functional modulation of a wide range of biological processes associated with HtrA2. Hence, this study for the first time dissects the structural architecture of HAX-1 and elucidates its role in PDZ-independent activation of HtrA2.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Brindle, Kevin M., Alexandra M. Fulton et Simon-Peter Williams. « Enzymologyin vivo using NMR and molecular genetics ». Journal of Molecular Recognition 6, no 4 (décembre 1993) : 159–65. http://dx.doi.org/10.1002/jmr.300060404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Nicoll, Callum R., Marta Massari, Marco W. Fraaije, Maria Laura Mascotti et Andrea Mattevi. « Impact of ancestral sequence reconstruction on mechanistic and structural enzymology ». Current Opinion in Structural Biology 82 (octobre 2023) : 102669. http://dx.doi.org/10.1016/j.sbi.2023.102669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lachowicz, Jake, James Lee, Alia Sagatova, Kristen Jew et Tyler L. Grove. « The new epoch of structural insights into radical SAM enzymology ». Current Opinion in Structural Biology 83 (décembre 2023) : 102720. http://dx.doi.org/10.1016/j.sbi.2023.102720.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Hermann, Lucas, Christopher-Nils Mais, Laura Czech, Sander H. J. Smits, Gert Bange et Erhard Bremer. « The ups and downs of ectoine : structural enzymology of a major microbial stress protectant and versatile nutrient ». Biological Chemistry 401, no 12 (26 novembre 2020) : 1443–68. http://dx.doi.org/10.1515/hsz-2020-0223.

Texte intégral
Résumé :
AbstractEctoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Davis, Tasha R., Mariah R. Pierce, Sadie X. Novak et James L. Hougland. « Ghrelin octanoylation by ghrelin O -acyltransferase : protein acylation impacting metabolic and neuroendocrine signalling ». Open Biology 11, no 7 (juillet 2021) : 210080. http://dx.doi.org/10.1098/rsob.210080.

Texte intégral
Résumé :
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O -acyltransferase (GOAT), a member of the membrane-bound O -acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Naismith, J. H. « Chemical insights from structural studies of enzymes ». Biochemical Society Transactions 32, no 5 (26 octobre 2004) : 647–54. http://dx.doi.org/10.1042/bst0320647.

Texte intégral
Résumé :
The rapid progress in structural and molecular biology over the past fifteen years has allowed chemists to access the structures of enzymes, of their complexes and of mutants. This wealth of structural information has led to a surge in the interest in enzymes as elegant chemical catalysts. Enzymology is a distinguished field and has been making vital contributions to medicine and basic science long before structural biology. This review for the Colworth Medal Lecture discusses work from the author's laboratory. This work has been carried out in collaboration with many other laboratories. The work has mapped out the chemical mechanisms and structures of interesting novel enzymes. The review tries to highlight the interesting chemical aspects of the mechanisms involved and how structural analysis has provided a detailed insight. The review focuses on carbohydrate-processing pathways in bacteria, and includes some recent data on an integral membrane protein.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Zinoviev, V. V., A. A. Evdokimov, S. Hattman et E. G. Malygin. « Molecular Enzymology of Phage T4 Dam DNA Methyltransferase ». Molecular Biology 38, no 5 (septembre 2004) : 737–51. http://dx.doi.org/10.1023/b:mbil.0000043943.07792.80.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Goñi, Félix M., et Alicia Alonso. « Sphingomyelinases : enzymology and membrane activity ». FEBS Letters 531, no 1 (28 septembre 2002) : 38–46. http://dx.doi.org/10.1016/s0014-5793(02)03482-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Mantle, T. J. « Advances in enzymology : vol. 62 ». FEBS Letters 261, no 1 (12 février 1990) : 210. http://dx.doi.org/10.1016/0014-5793(90)80674-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Thomson, A. « Advances in enzymology, volume 63 ». FEBS Letters 293, no 1-2 (1 novembre 1991) : 224–25. http://dx.doi.org/10.1016/0014-5793(91)81193-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Fothergill-Gilmore, L. A. « Advances in enzymology : volume 57 ». FEBS Letters 186, no 1 (1 juillet 1985) : 117. http://dx.doi.org/10.1016/0014-5793(85)81352-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Malecki, Piotr H., Magdalena Bejger, Wojciech Rypniewski et Constantinos E. Vorgias. « The Crystal Structure of a Streptomyces thermoviolaceus Thermophilic Chitinase Known for Its Refolding Efficiency ». International Journal of Molecular Sciences 21, no 8 (21 avril 2020) : 2892. http://dx.doi.org/10.3390/ijms21082892.

Texte intégral
Résumé :
Analyzing the structure of proteins from extremophiles is a promising way to study the rules governing the protein structure, because such proteins are results of structural and functional optimization under well-defined conditions. Studying the structure of chitinases addresses an interesting aspect of enzymology, because chitin, while being the world’s second most abundant biopolymer, is also a recalcitrant substrate. The crystal structure of a thermostable chitinase from Streptomyces thermoviolaceus (StChi40) has been solved revealing a β/α-barrel (TIM-barrel) fold with an α+β insertion domain. This is the first chitinase structure of the multi-chitinase system of S. thermoviolaceus. The protein is also known to refold efficiently after thermal or chemical denaturation. StChi40 is structurally close to the catalytic domain of psychrophilic chitinase B from Arthrobacter TAD20. Differences are noted in comparison to the previously examined chitinases, particularly in the substrate-binding cleft. A comparison of the thermophilic enzyme with its psychrophilic homologue revealed structural features that could be attributed to StChi40’s thermal stability: compactness of the structure with trimmed surface loops and unique disulfide bridges, one of which is additionally stabilized by S–π interactions with aromatic rings. Uncharacteristically for thermophilic proteins, StChi40 has fewer salt bridges than its mesophilic and psychrophilic homologues.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Barford, David, et Thomas L. Blundell. « Dame Louise Napier Johnson. 26 September 1940—25 September 2012 ». Biographical Memoirs of Fellows of the Royal Society 72 (2 mars 2022) : 221–50. http://dx.doi.org/10.1098/rsbm.2021.0038.

Texte intégral
Résumé :
Louise Johnson was a leading architect of protein crystallography and structural enzymology. She pioneered the application of the technique to understand how enzymes function at the molecular level. Much of our current knowledge of how enzymes catalyse chemical reactions with high specificity and how their activities are regulated, especially by cooperative allosteric transitions and reversible protein phosphorylation, has its origins in Louise's research on lysozyme, glycogen phosphorylase and protein kinases. Louise helped pioneer Laue protein crystallography as a method to elucidate dynamic structural changes in proteins. She was a strong advocate of synchrotron radiation as a tool for structural biology, working to establish third generation synchrotrons. Her delight in science and kindness toward her colleagues and students were an inspiration to those who knew her.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Magid, Linda, Peter Walde, Gianni Zampieri, Ezio Battistel, Qiaoqian Pen, Edoardo Trotta, Marco Maestro et Pier Luigi Luis. « Research report on proteins in reverse micelles. Structural aspects and enzymology ». Colloids and Surfaces 30, no 1 (janvier 1987) : 193–207. http://dx.doi.org/10.1016/0166-6622(87)80209-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Jahnke, Tamera S., Qi Chao et Vasu Nair. « Dinucleotides Incorporating Isomeric Nucleosides : Synthesis, Structural and Stereochemical Characterization, and Enzymology ». Nucleosides and Nucleotides 16, no 7-9 (juillet 1997) : 1087–90. http://dx.doi.org/10.1080/07328319708006138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fruk, Ljiljana, Chi-Hsien Kuo, Eduardo Torres et Christof M Niemeyer. « Apoenzyme Reconstitution as a Chemical Tool for Structural Enzymology and Biotechnology ». Angewandte Chemie International Edition 48, no 9 (22 janvier 2009) : 1550–74. http://dx.doi.org/10.1002/anie.200803098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lee, Mihwa, Laura Burchill et Spencer J. Williams. « Biomineralization of short-chain organosulfonates : charting metabolic pathways by structural enzymology ». Acta Crystallographica Section A Foundations and Advances 79, a2 (22 août 2023) : C507. http://dx.doi.org/10.1107/s2053273323091088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Bu-Yu, Weichi Liu, Hengxia Jia, Guoliang Lu et Peng Gong. « An induced-fit de novo initiation mechanism suggested by a pestivirus RNA-dependent RNA polymerase ». Nucleic Acids Research 49, no 15 (7 août 2021) : 8811–21. http://dx.doi.org/10.1093/nar/gkab666.

Texte intégral
Résumé :
Abstract Viral RNA-dependent RNA polymerases (RdRPs) play central roles in the genome replication and transcription processes of RNA viruses. RdRPs initiate RNA synthesis either in primer-dependent or de novo mechanism, with the latter often assisted by a ‘priming element’ (PE) within the RdRP thumb domain. However, RdRP PEs exhibit high-level structural diversity, making it difficult to reconcile their conserved function in de novo initiation. Here we determined a 3.1-Å crystal structure of the Flaviviridae classical swine fever virus (CSFV) RdRP with a relative complete PE. Structure-based mutagenesis in combination with enzymology data further highlights the importance of a glycine residue (G671) and the participation of residues 665–680 in RdRP initiation. When compared with other representative Flaviviridae RdRPs, CSFV RdRP PE is structurally distinct but consistent in terminal initiation preference. Taken together, our work suggests that a conformational change in CSFV RdRP PE is necessary to fulfill de novo initiation, and similar ‘induced-fit’ mechanisms may be commonly taken by PE-containing de novo viral RdRPs.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Hemmerling, Franziska, et Frank Hahn. « Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides ». Beilstein Journal of Organic Chemistry 12 (20 juillet 2016) : 1512–50. http://dx.doi.org/10.3762/bjoc.12.148.

Texte intégral
Résumé :
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Butler, C. S., et D. J. Richardson. « The emerging molecular structure of the nitrogen cycle : an introduction to the proceedings of the 10th annual N-cycle meeting ». Biochemical Society Transactions 33, no 1 (1 février 2005) : 113–18. http://dx.doi.org/10.1042/bst0330113.

Texte intégral
Résumé :
Over the last 10 years, during the lifetime of the nitrogen cycle meetings, structural biology, coupled with spectroscopy, has had a major impact of our understanding enzymology of the nitrogen cycle. The three-dimensional structures for many of the key enzymes have now been resolved and have provided a wealth of information regarding the architecture of redox active metal sites, as well as revealing novel structural folds. Coupled with structure-based spectroscopic analysis, this has led to new insight into the reaction mechanisms of the diverse chemical transformations that together cycle nitrogen in the biosphere. An overview of the some of the key developments in field over the last decade is presented.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ramsay, Rona R., Richard D. Gandour et Feike R. van der Leij. « Molecular enzymology of carnitine transfer and transport ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1546, no 1 (mars 2001) : 21–43. http://dx.doi.org/10.1016/s0167-4838(01)00147-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Davies, G. J., et B. Henrissat. « Structural enzymology of carbohydrate-active enzymes : implications for the post-genomic era ». Biochemical Society Transactions 30, no 2 (1 avril 2002) : 291–97. http://dx.doi.org/10.1042/bst0300291.

Texte intégral
Résumé :
Simple and complex carbohydrates have been described as ‘the last frontier of molecular and cell biology’. The enzymes that are required for the synthesis and degradation of these compounds provide an enormous challenge in the post-genomic era. This reflects both the extreme chemical and functional diversity of sugars and the difficulties in characterizing both the substrates and the enzymes themselves. The vast myriad of enzymes involved in the synthesis, modification and degradation of oligosaccharides and polysaccharides is only just being unveiled by genomic sequencing. These so-called ‘carbohydrate-active enzymes’ lend themselves to classification by sensitive sequence similarity detection methods. The modularity, often extremely complex, of these enzymes must first be dissected and annotated before high throughput characterization or ‘structural genomics’ approaches may be employed. Once achieved, modular analysis also permits collation of a detailed ‘census’ of carbohydrate-active enzymes for a whole organism or throughout an ecosystem. At the structural level, improvements in X-ray crystallography have opened up a three-dimensional understanding of the way these enzymes work. The mechanisms of many of the glycoside hydrolase families are becoming clearer, yet glycosyltransferases are only slowly revealing their secrets. What is clear from the genomic and structural data is that if we are to harness the latent power of glycogenomics, scientists must consider distant sequence relatives revealed by the sequence families or other sensitive detection methods.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Mokhtari, D. A., M. J. Appel, P. M. Fordyce et D. Herschlag. « High throughput and quantitative enzymology in the genomic era ». Current Opinion in Structural Biology 71 (décembre 2021) : 259–73. http://dx.doi.org/10.1016/j.sbi.2021.07.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Danson, Michael J., et David W. Hough. « Promiscuity in the Archaea : The enzymology of their metabolic pathways ». Biochemist 27, no 1 (1 février 2005) : 17–21. http://dx.doi.org/10.1042/bio02701017.

Texte intégral
Résumé :
The pathways of central metabolism provide the metabolic connections between the catabolic (degradative) and anabolic (biosynthetic) routes in all living organisms. In hyperthermophilic Archaea, we have discovered a promiscuous central metabolic pathway that catabolizes a variety of sugars using a single set of enzymes. This article explores the structural basis of this promiscuity in enzymes that have to maintain their integrity at temperatures approaching 100°C.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Cianci, Michele. « Handbook of food enzymology, 1st edition ». Crystallography Reviews 27, no 3-4 (2 octobre 2021) : 206–8. http://dx.doi.org/10.1080/0889311x.2022.2030731.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Beyerlein, Kenneth R., Dennis Dierksmeyer, Valerio Mariani, Manuela Kuhn, Iosifina Sarrou, Angelica Ottaviano, Salah Awel et al. « Mix-and-diffuse serial synchrotron crystallography ». IUCrJ 4, no 6 (9 octobre 2017) : 769–77. http://dx.doi.org/10.1107/s2052252517013124.

Texte intégral
Résumé :
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.
Styles APA, Harvard, Vancouver, ISO, etc.
46

DeLaBarre, Byron, Fang Wang, Jeremy Travins, Stefan Gross, Erin Artin, Lenny Dang, Scott Biller et Katherine Yen. « Structural Biology of Mutant IDH2 Inhibition ». Acta Crystallographica Section A Foundations and Advances 70, a1 (5 août 2014) : C799. http://dx.doi.org/10.1107/s2053273314092006.

Texte intégral
Résumé :
A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases- 1 and -2 (IDH1, IDH2)[1]. These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite R (-)-2-hydroxyglutarate (2HG). 2HG is a potent inhibitor of DNA methylating enzymes such as TET2[2]. This suggests a connection between cancer related IDH mutations and aberrant epigenetics. As such, IDH represents an important new druggable target in the pursuit of novel cancer therapies. We have developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface[3]. While structures of IDH1 and IDH2 were known, this is the first ever structure of an inhibited IDH protein and shows a novel conformation of IDH2. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia (AML) cells in vitro. These data provide proof-of- concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wiseman, Alan. « Cytochrome P450 (Methods in enzymology, volume 206) ». FEBS Letters 306, no 2-3 (20 juillet 1992) : 276–77. http://dx.doi.org/10.1016/0014-5793(92)81018-h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Widom, Julia R., Soma Dhakal, Laurie A. Heinicke et Nils G. Walter. « Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology : an update ». Archives of Toxicology 88, no 11 (12 septembre 2014) : 1965–85. http://dx.doi.org/10.1007/s00204-014-1357-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shugar, David. « Protein-DNA interactions (Methods in ENZYMOLOGY, vol. 208) ». FEBS Letters 313, no 3 (30 novembre 1992) : 320. http://dx.doi.org/10.1016/0014-5793(92)81220-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Salerno, John C. « Neuronal nitric oxide synthase : Prototype for pulsed enzymology ». FEBS Letters 582, no 10 (7 avril 2008) : 1395–99. http://dx.doi.org/10.1016/j.febslet.2008.03.051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie