Littérature scientifique sur le sujet « Enzymologie structurale »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Enzymologie structurale ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Enzymologie structurale"
Pearson, Arwen R., Andrea Mozzarelli et Gian Luigi Rossi. « Microspectrophotometry for structural enzymology ». Current Opinion in Structural Biology 14, no 6 (décembre 2004) : 656–62. http://dx.doi.org/10.1016/j.sbi.2004.10.007.
Texte intégralEinsle, Oliver, et Douglas C. Rees. « Structural Enzymology of Nitrogenase Enzymes ». Chemical Reviews 120, no 12 (15 juin 2020) : 4969–5004. http://dx.doi.org/10.1021/acs.chemrev.0c00067.
Texte intégralSchneider, Gunter, et Ylva Lindqvist. « Structural enzymology of biotin biosynthesis ». FEBS Letters 495, no 1-2 (19 avril 2001) : 7–11. http://dx.doi.org/10.1016/s0014-5793(01)02325-0.
Texte intégralMuretta, Joseph M., Yonggun Jun, Steven P. Gross, Jennifer Major, David D. Thomas et Steven S. Rosenfeld. « The structural kinetics of switch-1 and the neck linker explain the functions of kinesin-1 and Eg5 ». Proceedings of the National Academy of Sciences 112, no 48 (16 novembre 2015) : E6606—E6613. http://dx.doi.org/10.1073/pnas.1512305112.
Texte intégralBuschiazzo, Alejandro, et Pedro M. Alzari. « Structural insights into sialic acid enzymology ». Current Opinion in Chemical Biology 12, no 5 (octobre 2008) : 565–72. http://dx.doi.org/10.1016/j.cbpa.2008.06.017.
Texte intégralLong, Tao, Erik W. Debler et Xiaochun Li. « Structural enzymology of cholesterol biosynthesis and storage ». Current Opinion in Structural Biology 74 (juin 2022) : 102369. http://dx.doi.org/10.1016/j.sbi.2022.102369.
Texte intégralKupitz, Christopher, Jose L. Olmos, Mark Holl, Lee Tremblay, Kanupriya Pande, Suraj Pandey, Dominik Oberthür et al. « Structural enzymology using X-ray free electron lasers ». Structural Dynamics 4, no 4 (15 décembre 2016) : 044003. http://dx.doi.org/10.1063/1.4972069.
Texte intégralJohnson, Louise N., et Gregory A. Petsko. « David Phillips and the origin of structural enzymology ». Trends in Biochemical Sciences 24, no 7 (juillet 1999) : 287–89. http://dx.doi.org/10.1016/s0968-0004(99)01423-1.
Texte intégralPatel, S., M. Martı́nez-Ripoll, Tom L. Blundell et A. Albert. « Structural Enzymology of Li+-sensitive/Mg2+-dependent Phosphatases ». Journal of Molecular Biology 320, no 5 (juillet 2002) : 1087–94. http://dx.doi.org/10.1016/s0022-2836(02)00564-8.
Texte intégralSchnell, Robert, et Gunter Schneider. « Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis ». Biochemical and Biophysical Research Communications 396, no 1 (mai 2010) : 33–38. http://dx.doi.org/10.1016/j.bbrc.2010.02.118.
Texte intégralThèses sur le sujet "Enzymologie structurale"
Contet, Alicia. « Caractérisation biochimique et biophysique des deux cytidylyltransférases de Plasmodium falciparum, enzymes clés du métabolisme des phospholipides ». Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS085.
Texte intégralMalaria is caused by the infection and destruction of red blood cells by protozoan parasitesbelonging to the genus Plasmodium. During its intra-erythrocytic development, Plasmodiumfalciparum requires massive biosynthesis of membranes which are mainly composed of phospholipids.Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together represent about 80% of thetotal membrane lipids and inhibition of their biosynthesis leads to parasite death. PC and PE aresynthesized by the parasite's machinery mainly through the de novo CDP-choline and CDPethanolamine(Kennedy) pathways using respectively choline and ethanolamine as precursors. Thisstudy focuses on the rate limiting steps of these pathways catalyzed by CTP:phosphocholine andCTP:phosphoethanolamine cytidylytransferases (PfCCT and PfECT, respectively). In Plasmodiumspecies, both CCT and ECT contain two catalytic cores (CT domains) separated by a long linker.Interestingly, for CCT this feature is found only in three organisms, all from the phylum ofApicomplexa: Babesia, Theileria and Plasmodium, whereas the presence of two CT domains is ageneral feature in all ECTs known so far. The first part of this work consists in the biochemicalcharacterization of PfCCT and the investigation of its druggability. We showed that both PfCCT CTdomains are active and display similar kinetic parameters while only the N-terminal CT domain wasactive in PfECT. Subsequent to an in silico structure-based screening of compounds libraries, weidentified a PfCCT inhibitor able to inhibit PC synthesis as well as P. falciparum growth in vitro in thehigh µM range. This compound represents a first step toward the optimization of future more potentcompounds. In the second part of this study, we investigated the catalytic mechanism of PfECT anddeciphered its interactions with its ligands using biochemical, biophysical and structural approaches.Collectively, these results bring new insights into the biochemical and structural properties of thesetwo keys enzymes of the phospholipid metabolism in P. falciparum and pave the way for their futuredevelopment as potential drug target
Bou, Nader Charles. « Structural and Functional characterization of flavoenzymes involved in posttranscriptional modification of tRNA ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066205/document.
Texte intégralPosttranscriptional modification of ribonucleic acids (RNAs) is a crucial maturation step conserved in all domains of life. During my thesis, I have brought structural and functional insights on flavoenzymes involved in transfer RNA (tRNA) modifications: dihydrouridine synthase (Dus) responsible for dihydrouridine formation using flavin mononucleotide (FMN) and TrmFO responsible for C5 methylation of uridine position 54 relying on flavin adenosine dinucleotide (FAD) and methylenetetrahydrofolate. To elucidate the chemical mechanism of TrmFO we designed an apoprotein via a single mutation that could be reconstituted in vitro with FAD. Furthermore, we chemically synthesized the postulated intermediate active species consisting of a flavin iminium harboring a methylene moiety on the isoalloxazine N5 that was further characterized by mass spectrometry and UV-visible spectroscopy. Reconstitution of TrmFO with this molecule restored in vitro activity on a tRNA transcript proving that TrmFO uses FAD as a methylating agent via a reductive methylation.Dus2 reduces U20 and is comprised of a canonical Dus domain however, mammals have an additional double-stranded RNA-binding domain (dsRBD). To bring functional insight for this modular organization, we showed that only full length human Dus2 was active while its isolated domains were not. tRNA recognition is driven by the dsRBD via binding the acceptor and TΨ stem of tRNA with higher affinity then dsRNA as evidenced by NMR. We further solved the X-ray structures for both domains showing redistribution of surface positive charges justifying the involvement of this dsRBD for tRNA recognition in mammalian Dus2. This was attributed to a peculiar N-terminal extension proven by mutational analysis and an X-ray structure of dsRBD in complex with 22-nucleotide dsRNA. Altogether our work illustrates how during evolution, Dus2 enzymes acquired an engineered dsRBD for efficient tRNA binding via a ruler mechanism
Moissonnier, Loïck. « Etude fonctionnelle et structurale du transporteur de multiple drogues, BmrA, en condition d’équilibre et en temps résolu. Caractérisation structurale de BmrA en liposome par cryoEM ». Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10213.
Texte intégralAccording to the World Health Organization, antibiotic resistance is a major problem for humanity due to the emergence of multiresistant bacteria. The emergence of these resistances in bacteria is due to their ability to implement numerous strategies to prevent antibiotics from working. In particular, the first line of defense of these bacteria is the overexpression of ABC (ATP-Binding Cassette) transporters, which expel antibiotics out of the bacterial cell, reducing their concentrations below their cytotoxic thresholds. Over 50 years of study on these transporters have enabled the scientific community to establish a global mechanism, particularly thanks to the increasing acquisition of 3D structures. This has been closely linked to the technological and methodological evolution of structural biology in recent years, especially with the emergence of cryoEM. As knowledge advances, the questions become more precise, and many questions remain about understanding their functioning. As part of my project, I studied BmrA, one of these ABC transporters expressed in Bacillus subtilis, which confers resistance to cervimycin C, an antibiotic secreted by Streptomyces tendae, its natural competitor in the same biotope. Additionally, this transporter is capable of binding and transporting a wide variety of molecules, including many antibiotics, by adopting both a conformation that takes up the ligand (IF, inward-facing conformation) and an outward-facing conformation (OF) to release it. This ability to handle multiple molecules remains a highly debated question, especially in understanding the transport mechanism at the molecular level. During my Ph.D., I participated in a structural enzymology study on an inactive E504A mutant in the presence of ligands (Rhodamine 6G, Hoechst 33342) to improve knowledge of this mechanism. These ligands act as allosteric effectors on the ATP binding of BmrA, impacting the transition between IF and OF conformations. The resolution of several 3D structures by cryoEM was achieved by varying the concentration of ATP. An analysis of the flexibility of each of these conformations highlighted the molecular rearrangements that BmrA can adopt to ensure its polyspecificity. Moreover, I provided numerous functional insights regarding the coupling between ligand transport and the ATPase activity of this transporter. The second part of my work focused on studying the conformational transition occurring in BmrA after ATP binding using so-called "time-resolved" techniques. The objective was to monitor these conformational changes over time using the intrinsic fluorescence of BmrA coupled with cryoEM. I developed and optimized the experimental conditions to conduct this study, particularly acquiring kinetic and dynamic information on mutants as well as the wild-type protein. Finally, the last part of the manuscript involved reconstituting BmrA in a more native amphipathic environment than detergents to obtain its 3D structure by cryoEM. I optimized this reconstitution protocol to obtain the best possible sample for grid deposition. During this process, I characterized the formation of the proteoliposome at each stage of the protocol by observing it with cryoEM. Thanks to this study, I was able to obtain the first 2D classes of BmrA in a lipid bilayer. In conclusion, this thesis offers a new way to study the structure-function relationship of proteins by developing structural enzymology tools and methodology to visualize the dynamics of this ABC transporter, as well as a first approach to studying it in liposomes
Kubiak, Xavier. « Etude fonctionnelle et structurale d'arylamine N-acetyltransferases atypiques chez Legionella pneumophila et Bacillus cereus ». Paris 7, 2012. http://www.theses.fr/2012PA077080.
Texte intégralArylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes involved in the biotransformation of a wide range of aromatic amine chemicals (pollutants, drugs, pre-carcinogens). The 3D structure of NATs has been recently solved and all NATs characterized to date share the same structural features, including a strictly conserved Cys-His-Asp catalytic triad. Legionella pneumophila and Bacillus cereus are two bacterial pathogens that constitute a public health issue both in France and in the world. L. Pneumophila is the etiologic agent of legionellosis, a severe pneumonia, while B, cereus is responsible for a high number of foodborne intoxications. These two organisms are ubiquitous of aquatic environments and soils, respectively, which provide a risk of exposure to aromatic amine compounds. Our work is focused on L. Pneumophila and B. Cereus NAT isoforms that exhibit atypical features compared to isoforms characterized so far. The study of NATs sequences from three clinical strains of L. Pneumophila reveals several amino acid variations between strains. This unusual sequence heterogeneity leads to variations in catalytic and structural properties in the three variants. The characterization of a nat knock-out strain reveals that L pneumophila possesses in vivo a NAT-dependent detoxification pathway of aromatic amines chemicals. We also demonstrate the existence of a new NAT isoform in B. Cereus that lacks the canonical catalytic triad. Indeed, (BACCR)NAT3 has a glutamate instead of an aspartate at the catalytic position. Against ail expectations this isoform is active and correctly folded. Interestingly, the 3D structure of the enzyme has been solved and shows a classic NAT fold and catalytic triad geometry compared to classical NAT enzymes. Taken together, these results suggest a greater functional and structural diversity than expected in this enzyme family
Bou, Nader Charles. « Structural and Functional characterization of flavoenzymes involved in posttranscriptional modification of tRNA ». Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066205.
Texte intégralPosttranscriptional modification of ribonucleic acids (RNAs) is a crucial maturation step conserved in all domains of life. During my thesis, I have brought structural and functional insights on flavoenzymes involved in transfer RNA (tRNA) modifications: dihydrouridine synthase (Dus) responsible for dihydrouridine formation using flavin mononucleotide (FMN) and TrmFO responsible for C5 methylation of uridine position 54 relying on flavin adenosine dinucleotide (FAD) and methylenetetrahydrofolate. To elucidate the chemical mechanism of TrmFO we designed an apoprotein via a single mutation that could be reconstituted in vitro with FAD. Furthermore, we chemically synthesized the postulated intermediate active species consisting of a flavin iminium harboring a methylene moiety on the isoalloxazine N5 that was further characterized by mass spectrometry and UV-visible spectroscopy. Reconstitution of TrmFO with this molecule restored in vitro activity on a tRNA transcript proving that TrmFO uses FAD as a methylating agent via a reductive methylation.Dus2 reduces U20 and is comprised of a canonical Dus domain however, mammals have an additional double-stranded RNA-binding domain (dsRBD). To bring functional insight for this modular organization, we showed that only full length human Dus2 was active while its isolated domains were not. tRNA recognition is driven by the dsRBD via binding the acceptor and TΨ stem of tRNA with higher affinity then dsRNA as evidenced by NMR. We further solved the X-ray structures for both domains showing redistribution of surface positive charges justifying the involvement of this dsRBD for tRNA recognition in mammalian Dus2. This was attributed to a peculiar N-terminal extension proven by mutational analysis and an X-ray structure of dsRBD in complex with 22-nucleotide dsRNA. Altogether our work illustrates how during evolution, Dus2 enzymes acquired an engineered dsRBD for efficient tRNA binding via a ruler mechanism
Nusbaum, Julien. « Caractérisation structurale et fonctionnelle de la peptide déformylase du phage Vp16T ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS510/document.
Texte intégralBeing synthesized proteins undergo very early changes in their N-terminal end, since it emerges from the outlet channel of the ribosome. The first modification is the excision of the initiator methionine, provided by a methionine aminopeptidase (MetAP), preceded by its deformylating enzyme peptide deformylase (PDF) in bacteria and in mitochondria and chloroplasts. This process is ubiquitous and essential, and has been described in the kingdom of life. In bacteria, Type 1B PDFs would bind to the ribosome near the end of the outlet tunnel of the nascent peptide via its C-terminal helix α. But recent metagenomic analyzes revealed the unexpected presence of genes encoding putative PDFs in marine viruses. Unexpectedly, all viral PDF have very short C-terminal sequences and lacking the α3 helix. The identification of these atypical PDFs then raises new questions about their possible interaction with ribosome and their biological function. The aim of my thesis was therefore to achieve the complete and integrated characterization of peptide deformylase bacteriophage Vp16T, the sequence is one of the shortest known to date. I showed that the phage Vp16T code an active protein in vivo and in vitro, and can bind to the ribosome despite the absence of the C-terminal helix α. The structure-function characterization Vp16PDF revealed unique features that could then explain its function in the replication of the phage. Thus I have shown that expression in E. coli Vp16PDF modifies the envelope structure, induces accumulation of aggregates and ultimately inhibits bacterial growth. In addition, the study of mutant bacterial strains showed that Vp16PDF specifically interfere with the folding and addressing of membrane proteins. This latter function could help destabilize the membrane of the host and thereby promote release of viral particles
Bazeille, Nicolas. « Caractérisation structurale et fonctionnelle de l’hélicase du syndrome de Bloom et analyse de la toxicité du cadmium sur cette enzyme ». Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112340.
Texte intégralThe DNA double helix is a stable structure that ensures both the protection and transmission of genetic information. To access this information, a large family of multifunctional enzymes called helicases performs the separation of complementary bases of DNA. Some of these helicases in humans are associated with cancer predisposition syndromes. This is the case of Bloom syndrome (BS), a recessive genetic disease that results in an increase in genetic instability but where no phenomenon of haploinsufficiency or dominant negative is found in carriers heterozygotes. Yet we recognize that the Bloom syndrome protein (BLM) adopts a multimeric structure in vitro, but the expression among some heterozygotes of an inactive enzyme is not considered as a risk factor. To explain this paradox, we studied the structure of the BLM and find that it works as a monomer, a new result which justifies why most inactive forms does not influence the degree of cancer predisposition. On the other hand, cadmium toxicity is potentially linked to the inactivation of the BLM helicase as cells exposed to cadmium present analogies with those of patients with Bloom syndrome. Indeed, we observed in vitro, that low concentrations of cadmium reduce helicase activity by promoting its oligomerization. These studies provide new information on the molecular mechanism of the BLM helicase and emphasize its importance in maintaining genome integrity
Reymann, Jean-Marc. « Aldose reductase de cristallin de porc : enzymologie et structure ». Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13085.
Texte intégralRahman, Pour Rahman. « Enzymology and structural enzymology of dye-decolorizing peroxidases and a primary study of encapsulin ». Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/73395/.
Texte intégralJansson, Anna. « Structural enzymology of the biosynthesis of polyketide antibiotics / ». Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-916-1/.
Texte intégralLivres sur le sujet "Enzymologie structurale"
Park, Kwan-Hwa. Carbohydrate-active enzymes : Structure, function and applications. Cambridge : Woodhead Publishing Ltd, 2008.
Trouver le texte intégralMiller, Justin M., dir. Mechanistic Enzymology : Bridging Structure and Function. Washington, DC : American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1357.
Texte intégralAgricultural Biotechnology Symposium on "Carbohydrate-Active Enzymes : Structure, Function, and Applications" (2008 Seoul National University). Carbohydrate-active enzymes : Structure, function and applications. Boca Raton : CRC Press, 2008.
Trouver le texte intégralCopeland, Robert Allen. Enzymes : A practical introduction to structure, mechanism, and data analysis. New York : VCH Publishers, 1996.
Trouver le texte intégralI, Mackness M., Clerc M, North Atlanitic Treaty Organization. Scientific Affairs Division. et NATO Advanced Research Workshop on Esterases, Lipases, and Phospholipases (1993 : Bordeaux, France), dir. Esterases, lipases, and phospholipases : From structure to clinical significance. New York : Plenum, 1994.
Trouver le texte intégralR, Acharya K., dir. Glycogen phosphorylase b : Description of the protein structure. Singapore : World Scientific, 1991.
Trouver le texte intégralCastellano, Immacolata. Gamma-glutamyl transpeptidases : Structure and function. Basel : Springer, 2013.
Trouver le texte intégralDugas, Hermann. Bioorganic chemistry : A chemical approach to enzyme action. 3e éd. New York : Springer, 1996.
Trouver le texte intégralDugas, Hermann. Bioorganic chemistry : A chemical approach to enzyme action. 2e éd. New York : Springer-Verlag, 1989.
Trouver le texte intégralCopeland, Robert A. Enzymes : A Practical Introduction to Structure, Mechanism and Data Analysis. Vch Pub, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Enzymologie structurale"
Korman, Tyler Paz, Brian Douglas Ames et Shiou-Chuan Tsai. « Structural Enzymology of Aromatic Polyketide Synthase ». Dans ACS Symposium Series, 167–84. Washington, DC : American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0955.ch012.
Texte intégralRobyt, John F. « Starch : Structure, Properties, Chemistry, and Enzymology ». Dans Glycoscience, 1437–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-30429-6_35.
Texte intégralChampoux, James J. « Human DNA Topoisomerase I : Structure, Enzymology and Biology ». Dans Cancer Drug Discovery and Development, 53–69. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0323-4_2.
Texte intégral« Methods in Enzymology ». Dans G Protein Coupled Receptors - Structure, xix—liv. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-391861-1.09989-5.
Texte intégralKarabencheva, Tatyana, et Christo Christov. « Structural and Computational Enzymology ». Dans Structural and Mechanistic Enzymology - Bringing Together Experiments and Computing, 1–4. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-398312-1.00001-9.
Texte intégralDey, Mishtu. « Enzymology of Microbial Dimethylsulfoniopropionate Catabolism ». Dans Structural and Mechanistic Enzymology, 195–222. Elsevier, 2017. http://dx.doi.org/10.1016/bs.apcsb.2017.05.001.
Texte intégralGupta, Munishwar Nath, et Vladimir N. Uversky. « Enzymology : early insights ». Dans Structure and Intrinsic Disorder in Enzymology, 1–29. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99533-7.00013-3.
Texte intégralKorman, Tyler Paz, Brian Ames et Shiou-Chuan (Sheryl) Tsai. « Structural Enzymology of Polyketide Synthase : The Structure–Sequence–Function Correlation ». Dans Comprehensive Natural Products II, 305–45. Elsevier, 2010. http://dx.doi.org/10.1016/b978-008045382-8.00020-4.
Texte intégralCohen, Fred E., et scott R. Presnell. « The combinatorial approach ». Dans Protein Structure Prediction, 207–28. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780199634972.003.0009.
Texte intégralYasunobu, Kerry T., et Anthony Tan. « Advances in Monoamine Oxidase Enzymology ». Dans Structure and Functions of Amine Oxidases, 209–17. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076951-20.
Texte intégralActes de conférences sur le sujet "Enzymologie structurale"
Davies, Gideon J. « FROM LYSOZYME AND BACK AGAIN : STRUCTURAL ENZYMOLOGY OF GLYCOSYL TRANSFER ». Dans XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.382.
Texte intégralRapports d'organisations sur le sujet "Enzymologie structurale"
Morrison, Mark, Joshuah Miron, Edward A. Bayer et Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, mars 2004. http://dx.doi.org/10.32747/2004.7586475.bard.
Texte intégral