Sommaire
Littérature scientifique sur le sujet « Enzymatic functionalization »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Enzymatic functionalization ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Enzymatic functionalization"
Lewis, Jared C., Pedro S. Coelho et Frances H. Arnold. « Enzymatic functionalization of carbon–hydrogen bonds ». Chem. Soc. Rev. 40, no 4 (2011) : 2003–21. http://dx.doi.org/10.1039/c0cs00067a.
Texte intégralAcero, Enrique Herrero, Caroline Gamerith, Andreas Ortner, Doris Ribitsch, Georg Steinkellner, Karl Gruber, Helmut Schwab et Georg M. Guebitz. « Strategies for enzymatic functionalization of synthetic polymers ». New Biotechnology 31 (juillet 2014) : S31. http://dx.doi.org/10.1016/j.nbt.2014.05.1684.
Texte intégralHerrera-González, Azucena, Gema Núñez-López, Sandrine Morel, Lorena Amaya-Delgado, Georgina Sandoval, Anne Gschaedler, Magali Remaud-Simeon et Javier Arrizon. « Functionalization of natural compounds by enzymatic fructosylation ». Applied Microbiology and Biotechnology 101, no 13 (8 juin 2017) : 5223–34. http://dx.doi.org/10.1007/s00253-017-8359-5.
Texte intégralFaccio, G., S. Senkalla, L. Thöny-Meyer et M. Richter. « Enzymatic multi-functionalization of microparticles under aqueous neutral conditions ». RSC Advances 5, no 29 (2015) : 22319–25. http://dx.doi.org/10.1039/c5ra00669d.
Texte intégralKaur, Amandeep, J. N. Chakraborty et Kashyap Kumar Dubey. « Enzymatic Functionalization of Wool for Felting Shrink-Resistance ». Journal of Natural Fibers 13, no 4 (3 juillet 2016) : 437–50. http://dx.doi.org/10.1080/15440478.2015.1043686.
Texte intégralZhang, Lei, Wenshan Zhao, Hengzhen Chen et Yuanchen Cui. « Enzymatic synthesis of phenol polymer and its functionalization ». Journal of Molecular Catalysis B : Enzymatic 87 (mars 2013) : 30–36. http://dx.doi.org/10.1016/j.molcatb.2012.10.015.
Texte intégralLewis, Jared C., Pedro S. Coelho et Frances H. Arnold. « ChemInform Abstract : Enzymatic Functionalization of Carbon-Hydrogen Bonds ». ChemInform 42, no 29 (27 juin 2011) : no. http://dx.doi.org/10.1002/chin.201129261.
Texte intégralAhmadi, Yasaman, Elisa De Llano et Ivan Barišić. « (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures ». Nanoscale 10, no 16 (2018) : 7494–504. http://dx.doi.org/10.1039/c7nr09461b.
Texte intégralGuzmán-Mendoza, José Jesús, David Chávez-Flores, Silvia Lorena Montes-Fonseca, Carmen González-Horta, Erasmo Orrantia-Borunda et Blanca Sánchez-Ramírez. « A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase ». Nanomaterials 12, no 9 (26 avril 2022) : 1465. http://dx.doi.org/10.3390/nano12091465.
Texte intégralGuzmán-Mendoza, José Jesús, David Chávez-Flores, Silvia Lorena Montes-Fonseca, Carmen González-Horta, Erasmo Orrantia-Borunda et Blanca Sánchez-Ramírez. « A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase ». Nanomaterials 12, no 9 (26 avril 2022) : 1465. http://dx.doi.org/10.3390/nano12091465.
Texte intégralThèses sur le sujet "Enzymatic functionalization"
Sen, Mustafa Yasin. « Green Polymer Chemistry : Functionalization of Polymers Using Enzymatic Catalysis ». University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1258422775.
Texte intégralLiu, Tong. « Enzymatic Synthesis of Poly(lactic acid) Based Polyester Capable of Functionalization ». University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1430749638.
Texte intégralBicer, Isil. « Chemoenzymatic Functionalization Of Cyclic 1,2-diketones ». Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607293/index.pdf.
Texte intégralpositions. Enzyme catalyzed enantioselective hydrolysis of hydrolyzed acetoxy derivatives gives the corresponding hydroxylated diketones in optically pure form.
Alvarez, Albarran Alejandra. « Modular Surface Functionalization of Polyisobutylene-based Biomaterials ». University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1405173637.
Texte intégralIslam, Shohana Subrin Verfasser], Ulrich [Akademischer Betreuer] [Schwaneberg et Lothar [Akademischer Betreuer] Elling. « Enzymatic functionalization and degradation of natural and synthetic polymers / Shohana Subrin Islam ; Ulrich Schwaneberg, Lothar Elling ». Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181437/34.
Texte intégralIslam, Shohana Subrin [Verfasser], Ulrich [Akademischer Betreuer] Schwaneberg et Lothar [Akademischer Betreuer] Elling. « Enzymatic functionalization and degradation of natural and synthetic polymers / Shohana Subrin Islam ; Ulrich Schwaneberg, Lothar Elling ». Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181437/34.
Texte intégralLongo, Johan. « Design of biomechanocatalytic surfaces : modulations of enzymatic activity through macromolecular conformational changes ». Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE022/document.
Texte intégralSince many years, a new generation of materials called « smart materials » and defined by their capacity to adapt to their environment is intensively developed. Systems sensitive to different stimuli such as pH, light or ionic strength have been reported. One of these stimuli can also be a mechanical force which is involved in many reactions in nature such as, cells adhesion and proliferation, tissues growing or even plants developments. The aim of my thesis was dedicated to the elaboration of mechano-responsive materials. More precisely, materials that transform a stretching constraint into a chemical signal by mimicking the physical processes used by nature, namely protein conformational changes. We planned to achieve this goal by covalently grafting proteins or enzymes onto a stretchable substrate or incorporating them into cross-linked polymer networks. Stretching these materials should induce protein conformational changes leading to modifications of their properties
Lorenzen, Jan [Verfasser], Thomas [Akademischer Betreuer] Brück, Thomas [Gutachter] Brück, Thomas [Gutachter] Fässler, Uwe [Gutachter] Bornscheuer et Wolfgang [Gutachter] Eisenreich. « Enzymatic functionalization of bio based fatty acids and algae based triglycerides / Jan Lorenzen ; Gutachter : Thomas Brück, Thomas Fässler, Uwe Bornscheuer, Wolfgang Eisenreich ; Betreuer : Thomas Brück ». München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1201819997/34.
Texte intégralMaccow, Awilda. « A chemo-enzymatic approach to expand the chemical space of cellulose-derived materials : Application to eco-friendly dyeing of cellulosic fibers ». Electronic Thesis or Diss., Toulouse, INSA, 2022. http://www.theses.fr/2022ISAT0054.
Texte intégralThe extension of the chemical molecular space accessible from plant biomass by soft and clean methods is a timely topic that stimulates the scientific community in order to develop biobased products with low environmental impact and to widen the field of biomass exploitation. The functionalization of cellulose, the most abundant polysaccharide on the planet, and/or cello-oligosaccharides as described in this thesis is part of this approach. Our objective was to develop a chemo-enzymatic method involving the action of a mediator-assisted laccase to oxidize cello-oligosaccharides or cellulosic fibers, followed by reductive amination to graft amino compounds onto the cellulosic material. To this end, we first demonstrated the oxidation of cellobiose and methyl cellobiose using the laccase from Trametes versicolor and TEMPO as a mediator. Oxidation conditions were optimized with methyl cellobiose and applied to a cello-oligosaccharide mixture and cellopentaose. Using LC/MS analysis, we showed that a wide range of oxidized compounds is obtained and that the method is effective in producing acidic cello-oligosaccharides potentially of interest for the biomedical and nutraceutical fields. Then, we showed that the reactivity of oxidized cellopentaose with two aminated molecules, p-toluidine and rhodamine 123 (an aminated dye), allowed the binding of the amino compound to the oligosaccharides. Using LC/ MS and MS/MS techniques, we provided evidence for the presence of a strong, covalent amine bond between the dyes and cellopentaose, thus enlarging the chemical space accessible through this hybrid process. After completed this proof of concept, we attempted the dyeing of cotton threads. Cellulosic fibers are one of the main biosourced and biodegradable textile materials. However, chemical processing of textiles and especially the chemical methods used to covalently fix dyes are extremely polluting and harmful to health. Providing more eco-friendly alternatives is a challenge but of prime interest for a company like PILI, which was involved in the thesis project and is developing natural dyes using synthetic biology. Thus, the potential of the two-pot/two-step hybrid process was used to successfully graft p-Toluidine, rhodamine 123 and Acid Red 33 onto cotton thread. The covalent bond established between these dyes and the cotton fiber was proven for the first time. In addition, good homogeneity and wash-fastness were observed for acid Red 33 dyeing, demonstrating the robustness and applicability of the approach in real life. These original results have been patented. By testing other amino dyes, we also showed that the solubility, reactivity and structure of the aminated dye are important parameters to be addressed for dyeing optimization, which opens the way to the custom synthesis of new amino dyes suitable for this promising hybrid process
Nesterenko, Alla. « Etude et fonctionnalisation de protéines végétales en vue de leur application en microencapsulation ». Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0148/document.
Texte intégralProteins extracted from vegetables are relatively low-cost, non-toxic, biocompatible and biodegradable raw materials. They represent a good alternative to animal-based proteins and petroleum-extracted polymers. In this study, proteins derived from soybean and sunflower seeds were used as wall materials for microencapsulation of hydrophobic (-tocopherol) or hydrophilic (ascorbic acid) active material by spray-drying technique. Soybean proteins are widely used in food and non-food applications, especially in microencapsulation. They were studied in this work as wall material of reference. Sunflower proteins are not actually used in industrial application, but only in the form of oil-cake for animal feeding. That’s why new ways of valorization of this agricultural by-product should be investigated. Several proteins’ modifications such as enzymatic hydrolysis, acylation, cross-linking and cationization were studied in order to improve encapsulating properties of wall material. In the context of green chemistry, all the modifications and preparations were performed without use of organic solvents and chemical catalysts. The effect of protein chemical and enzymatic modifications, and process parameters (homogenization pressure, wall/core ratio and protein concentration) on different characteristics of liquid preparations and microparticles (viscosity, emulsion droplet size, microparticle size and morphology) and on parameters related to the spray-drying process (yield and efficiency of microencapsulation) was particularly investigated in this study. The obtained results confirmed that sunflower proteins are quite suitable as encapsulating agent and provide the microencapsulation efficiencies significantly higher compared to those obtained with soy proteins
Chapitres de livres sur le sujet "Enzymatic functionalization"
López-Cortés, N., A. Beloqui, A. Ghazi et M. Ferrer. « Enzymatic Functionalization of Hydrocarbon-like Molecules ». Dans Handbook of Hydrocarbon and Lipid Microbiology, 2841–58. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_211.
Texte intégralWaldmann, H., A. Heuser, P. Braun, M. Schultz et H. Kunz. « New Enzymatic Methods for the Selective Functionalization of Carbohydrate Derivatives ». Dans Microbial Reagents in Organic Synthesis, 113–22. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2444-7_9.
Texte intégralPuskas, Judit E., et Mustafa Y. Sen. « Green Polymer Chemistry : Enzymatic Functionalization of Liquid Polymers in Bulk ». Dans ACS Symposium Series, 417–24. Washington, DC : American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1043.ch028.
Texte intégralPuskas, Judit E., Kwang Su Seo, Marcela Castaño, Madalis Casiano et Chrys Wesdemiotis. « Green Polymer Chemistry : Enzymatic Functionalization of Poly(ethylene glycol)s Under Solventless Conditions ». Dans Green Polymer Chemistry : Biocatalysis and Materials II, 81–94. Washington, DC : American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1144.ch007.
Texte intégralPuton, Bruna Maria Saorin, Julia Lisboa Bernardi, Andressa Franco Denti, Luciana Dornelles Venquiaruto, Victor de Aguiar Pedott, Marcelo Luis Mignoni, Natalia Paroul et Rogério Marcos Dallago. « Immobilization of enzymatic extract in polyester fiber emulsified with polyurethane resin ». Dans A LOOK AT DEVELOPMENT. Seven Editora, 2023. http://dx.doi.org/10.56238/alookdevelopv1-163.
Texte intégralDerr, Ludmilla. « 4. Colloidal particles, their surface functionalization and covalent enzyme mobilization ». Dans Interactions between enzymes and oxide colloidal particles and their influence on enzymatic activity, 27–33. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783185760051-27.
Texte intégral« Carbon Materials for Gas and Bio-Sensing Applications Beyond Graphene ». Dans Materials Research Foundations, 39–68. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175-2.
Texte intégralBrumer, H. « Enzymatic functionalization of cellulosic fibres for textile and other applications : xyloglucan as a molecular anchor ». Dans Advances in Textile Biotechnology, 266–87. Elsevier, 2010. http://dx.doi.org/10.1533/9780857090232.2.266.
Texte intégralBakhtchadjian, Robert. « Introductory Notes on Mechanisms in Oxygen Atom Transfer Reactions of Transition Metal Complexes ». Dans Oxygen Atom Transfer Reactions, 1–38. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815050929123010005.
Texte intégral