Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Environmental magnetic.

Articles de revues sur le sujet « Environmental magnetic »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Environmental magnetic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Keith, McLauchlan. « Are environmental magnetic fields dangerous ? » Physics World 5, no 1 (janvier 1992) : 41–45. http://dx.doi.org/10.1088/2058-7058/5/1/30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhu, Jiahua, Suying Wei, Minjiao Chen, Hongbo Gu, Sowjanya B. Rapole, Sameer Pallavkar, Thomas C. Ho, Jack Hopper et Zhanhu Guo. « Magnetic nanocomposites for environmental remediation ». Advanced Powder Technology 24, no 2 (mars 2013) : 459–67. http://dx.doi.org/10.1016/j.apt.2012.10.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Juutilainen, J. « Environmental Health Criteria 69 : Magnetic Fields ». International Journal of Radiation Biology 54, no 3 (janvier 1988) : 505. http://dx.doi.org/10.1080/09553008814551891.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

HU, Shouyun. « Environmental magnetic studies of lacustrine sediments ». Chinese Science Bulletin 47, no 7 (2002) : 613. http://dx.doi.org/10.1360/02tb9141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Snowball, I. « Mineral magnetic signatures of environmental change ». GFF 118, sup004 (octobre 1996) : 70. http://dx.doi.org/10.1080/11035899609546361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tiwow, Vistarani Arini, Meytij Jeanne Rampe et Sulistiawaty Sulistiawaty. « Suseptibilitas Magnetik dan Konsentrasi Logam Berat Sedimen Sungai Tallo di Makassar ». JURNAL ILMIAH SAINS 22, no 1 (27 avril 2022) : 60. http://dx.doi.org/10.35799/jis.v22i1.38681.

Texte intégral
Résumé :
Keberadaan Sungai Tallo sangat penting bagi industri dan masyarakat yang berada di daerah aliran sungai. Namun, aktivitas sosial-ekonomi tidak dibarengi dengan pengelolaan sampah yang bertanggung jawab. Dengan demikian, secara umum sungai tercemar oleh polutan seperti logam berat. Oleh karena itu, perlu dilakukan monitoring sebagai langkah pengendalian kualitas Sungai Tallo untuk menghindari kondisi yang semakin buruk. Tujuan penelitian ini yaitu untuk meningkatkan pemahaman tentang hubungan antara parameter magnetik dan kandungan logam berat pada sedimen Sungai Tallo. Metode yang digunakan adalah metode magnetik lingkungan menggunakan parameter suseptibilitas magnetik. Selanjutnya, dilakukan pengujian X-Ray Fluorescence (XRF) untuk mengetahui konsentrasi unsur logam berat. Hasil menunjukkan Suseptibilitas magnetic sedimen Sungai Tallo berkisar 47,7 sampai 968,7 × 10-8 m3/kg. Suseptibilitas magnetik berhasil mengidentifikasi kelimpahan logam berat pada Sungai Tallo. Fe memiliki konsentrasi yang lebih tinggi dibandingkan Cr, Mn, dan Zn. Korelasi antara unsur logam berat Fe, Mn, dan Zn dengan suseptibilitas magnetik diperoleh korelasi positif kuat dimana unsur logam berat berkontribusi terhadap suseptibilitas magnetik. Studi ini mendukung parameter magnetic seperti suseptibilitas magnetik dapat berpotensial digunakan sebagai indikator polusi logam berat pada Sungai Tallo.Kata kunci: Logam berat; magnetik lingkungan; suseptibilitas magnetikMagnetic Susceptibility and Heavy Metal Concentration of Tallo River Sediments in MakassarABSTRACTThe existence of the Tallo River is very important for industry and people living in the watershed. However, socio-economic activities are not accompanied by responsible waste management. Thus, rivers are generally polluted by pollutants such as heavy metals. Therefore, monitoring is necessary as a measure to control the quality of the Tallo River to avoid worsening conditions. The purpose of this study was to improve understanding of the relationship between magnetic parameters and heavy metal content in Tallo River sediments. The method used was the environmental magnetic method using magnetic susceptibility parameters. Furthermore, X-Ray Fluorescence (XRF) was tested to determine the concentration of heavy metal elements. The results showed that the magnetic susceptibility of the Tallo River sediments ranged from 47.7 to 968.7 × 10-8 m3/kg. Magnetic susceptibility identified the abundance of heavy metals in the Tallo River. Fe has a higher concentration than Cr, Mn, and Zn. The correlation between heavy metal elements Fe, Mn, and Zn with magnetic susceptibility showed a strong positive correlation where heavy metal elements contribute to magnetic susceptibility. This study supports magnetic parameters such as magnetic susceptibility that can potentially be used as an indicator of heavy metal pollution in the Tallo River.Keywords: Environmental magnetic; heavy metal; magnetic susceptibility
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tiwow, Vistarani Arini, Meytij Jeanne Rampe et Sulistiawaty Sulistiawaty. « Suseptibilitas Magnetik dan Konsentrasi Logam Berat Sedimen Sungai Tallo di Makassar ». JURNAL ILMIAH SAINS 22, no 1 (27 avril 2022) : 60. http://dx.doi.org/10.35799/jis.v22i1.38681.

Texte intégral
Résumé :
Keberadaan Sungai Tallo sangat penting bagi industri dan masyarakat yang berada di daerah aliran sungai. Namun, aktivitas sosial-ekonomi tidak dibarengi dengan pengelolaan sampah yang bertanggung jawab. Dengan demikian, secara umum sungai tercemar oleh polutan seperti logam berat. Oleh karena itu, perlu dilakukan monitoring sebagai langkah pengendalian kualitas Sungai Tallo untuk menghindari kondisi yang semakin buruk. Tujuan penelitian ini yaitu untuk meningkatkan pemahaman tentang hubungan antara parameter magnetik dan kandungan logam berat pada sedimen Sungai Tallo. Metode yang digunakan adalah metode magnetik lingkungan menggunakan parameter suseptibilitas magnetik. Selanjutnya, dilakukan pengujian X-Ray Fluorescence (XRF) untuk mengetahui konsentrasi unsur logam berat. Hasil menunjukkan Suseptibilitas magnetic sedimen Sungai Tallo berkisar 47,7 sampai 968,7 × 10-8 m3/kg. Suseptibilitas magnetik berhasil mengidentifikasi kelimpahan logam berat pada Sungai Tallo. Fe memiliki konsentrasi yang lebih tinggi dibandingkan Cr, Mn, dan Zn. Korelasi antara unsur logam berat Fe, Mn, dan Zn dengan suseptibilitas magnetik diperoleh korelasi positif kuat dimana unsur logam berat berkontribusi terhadap suseptibilitas magnetik. Studi ini mendukung parameter magnetic seperti suseptibilitas magnetik dapat berpotensial digunakan sebagai indikator polusi logam berat pada Sungai Tallo.Kata kunci: Logam berat; magnetik lingkungan; suseptibilitas magnetikMagnetic Susceptibility and Heavy Metal Concentration of Tallo River Sediments in MakassarABSTRACTThe existence of the Tallo River is very important for industry and people living in the watershed. However, socio-economic activities are not accompanied by responsible waste management. Thus, rivers are generally polluted by pollutants such as heavy metals. Therefore, monitoring is necessary as a measure to control the quality of the Tallo River to avoid worsening conditions. The purpose of this study was to improve understanding of the relationship between magnetic parameters and heavy metal content in Tallo River sediments. The method used was the environmental magnetic method using magnetic susceptibility parameters. Furthermore, X-Ray Fluorescence (XRF) was tested to determine the concentration of heavy metal elements. The results showed that the magnetic susceptibility of the Tallo River sediments ranged from 47.7 to 968.7 × 10-8 m3/kg. Magnetic susceptibility identified the abundance of heavy metals in the Tallo River. Fe has a higher concentration than Cr, Mn, and Zn. The correlation between heavy metal elements Fe, Mn, and Zn with magnetic susceptibility showed a strong positive correlation where heavy metal elements contribute to magnetic susceptibility. This study supports magnetic parameters such as magnetic susceptibility that can potentially be used as an indicator of heavy metal pollution in the Tallo River.Keywords: Environmental magnetic; heavy metal; magnetic susceptibility
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tiwow, Vistarani Arini, Meytij Jeanne Rampe et Sulistiawaty Sulistiawaty. « Suseptibilitas Magnetik dan Konsentrasi Logam Berat Sedimen Sungai Tallo di Makassar ». JURNAL ILMIAH SAINS 22, no 1 (27 avril 2022) : 60. http://dx.doi.org/10.35799/jis.v22i1.38681.

Texte intégral
Résumé :
Keberadaan Sungai Tallo sangat penting bagi industri dan masyarakat yang berada di daerah aliran sungai. Namun, aktivitas sosial-ekonomi tidak dibarengi dengan pengelolaan sampah yang bertanggung jawab. Dengan demikian, secara umum sungai tercemar oleh polutan seperti logam berat. Oleh karena itu, perlu dilakukan monitoring sebagai langkah pengendalian kualitas Sungai Tallo untuk menghindari kondisi yang semakin buruk. Tujuan penelitian ini yaitu untuk meningkatkan pemahaman tentang hubungan antara parameter magnetik dan kandungan logam berat pada sedimen Sungai Tallo. Metode yang digunakan adalah metode magnetik lingkungan menggunakan parameter suseptibilitas magnetik. Selanjutnya, dilakukan pengujian X-Ray Fluorescence (XRF) untuk mengetahui konsentrasi unsur logam berat. Hasil menunjukkan Suseptibilitas magnetic sedimen Sungai Tallo berkisar 47,7 sampai 968,7 × 10-8 m3/kg. Suseptibilitas magnetik berhasil mengidentifikasi kelimpahan logam berat pada Sungai Tallo. Fe memiliki konsentrasi yang lebih tinggi dibandingkan Cr, Mn, dan Zn. Korelasi antara unsur logam berat Fe, Mn, dan Zn dengan suseptibilitas magnetik diperoleh korelasi positif kuat dimana unsur logam berat berkontribusi terhadap suseptibilitas magnetik. Studi ini mendukung parameter magnetic seperti suseptibilitas magnetik dapat berpotensial digunakan sebagai indikator polusi logam berat pada Sungai Tallo.Kata kunci: Logam berat; magnetik lingkungan; suseptibilitas magnetikMagnetic Susceptibility and Heavy Metal Concentration of Tallo River Sediments in MakassarABSTRACTThe existence of the Tallo River is very important for industry and people living in the watershed. However, socio-economic activities are not accompanied by responsible waste management. Thus, rivers are generally polluted by pollutants such as heavy metals. Therefore, monitoring is necessary as a measure to control the quality of the Tallo River to avoid worsening conditions. The purpose of this study was to improve understanding of the relationship between magnetic parameters and heavy metal content in Tallo River sediments. The method used was the environmental magnetic method using magnetic susceptibility parameters. Furthermore, X-Ray Fluorescence (XRF) was tested to determine the concentration of heavy metal elements. The results showed that the magnetic susceptibility of the Tallo River sediments ranged from 47.7 to 968.7 × 10-8 m3/kg. Magnetic susceptibility identified the abundance of heavy metals in the Tallo River. Fe has a higher concentration than Cr, Mn, and Zn. The correlation between heavy metal elements Fe, Mn, and Zn with magnetic susceptibility showed a strong positive correlation where heavy metal elements contribute to magnetic susceptibility. This study supports magnetic parameters such as magnetic susceptibility that can potentially be used as an indicator of heavy metal pollution in the Tallo River.Keywords: Environmental magnetic; heavy metal; magnetic susceptibility
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chaves, Thais de Oliveira, Raquel Dosciatti Bini, Verci Alves de Oliveira Junior, Andressa Domingos Polli, Adriana Garcia, Gustavo Sanguino Dias, Ivair Aparecido dos Santos, Paula Nunes de Oliveira, João Alencar Pamphile et Luiz Fernando Cotica. « Fungus-Based Magnetic Nanobiocomposites for Environmental Remediation ». Magnetochemistry 8, no 11 (26 octobre 2022) : 139. http://dx.doi.org/10.3390/magnetochemistry8110139.

Texte intégral
Résumé :
The use of a variety of microorganisms for the degradation of chemicals is a green solution to the problem of environmental pollution. In this work, fungi–magnetic nanoparticles were studied as systems with the potential to be applied in environmental remediation and pest control in agriculture. High food demand puts significant pressure on increasing the use of herbicides, insecticides, fungicides, pesticides, and fertilizers. The global problem of water pollution also demands new remediation solutions. As a sustainable alternative to commercial chemical products, nanobiocomposites were obtained from the interaction between the fungus M. anisopliae and two different types of magnetic nanoparticles. Fourier transform infrared spectroscopy, optical and electron microscopy, and energy dispersive spectroscopy were used to study the interaction between the fungus and nanoparticles, and the morphology of individual components and the final nanobiocomposites. Analyses show that the nanobiocomposites kept the same morphology as that of the fungus in natura. Magnetic measurements attest the magnetic properties of the nanobiocomposites. In summary, these nanobiocomposites possess both fungal and nanoparticle properties, i.e., nanobiocomposites were obtained with magnetic properties that provide a low-cost approach benefiting the environment (nanobiocomposites are retrievable) with more efficiency than that of the application of the fungus in natura.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Crockford, R. H., et P. M. Fleming. « Environmental magnetism as a stream sediment tracer : an interpretation of the methodology and some case studies ». Soil Research 36, no 1 (1998) : 167. http://dx.doi.org/10.1071/s97040.

Texte intégral
Résumé :
A comprehensive sediment sampling program was undertaken in the upper Molonglo catchment in south-eastern New South Wales to determine if mineral magnetics could be used to estimate sidestream contribution at river confluences in this environment. Some 12 confluences were examined over 1400 km 2 in 2 major basins and over 2 contrasting geological types. Sediment samples were divided into 7 size classes and the following magnetic properties measured: magnetic susceptibility at 2 frequencies, isothermal remanent magnetisation at 3 flux densities, and anhysteristic remanent magnetisation. The sidestream inputs were calculated for each particle size class from the range of magnetic parameters. Significant discrepancies and differences appeared in the resultant sidestream inputs, and this paper outlines the conclusions as to the reliability of the different analytical procedures. It is shown that both the concentration and magnetic grain size of ferrimagnetic minerals in the sediments must be taken into account. Where the difference in magnetic grain size between the upstream and sidestream sediments is small, the use of parameter crossplots or bulked magnetic ratios is generally not appropriate. The use of mass (concentration) magnetic values may be better. The difference in the demands of the crossplots and mass values methods is that crossplots require a wide range of mass magnetic concentrations in each branch, with the upstream and sidestream sediments having different magnetic grain sizes, whereas the mass values procedure does best with a very limited (but different) range of concentrations at the upstream and sidestream branches, but similar magnetic grain sizes. This paper provides an extensive discussion of the estimation technique using different parameter combinations, and uses 3 contrasting confluences as case studies.
Styles APA, Harvard, Vancouver, ISO, etc.
11

David, Valeriu, Ionut Nica, Alexandru Salceanu et Liviu Breniuc. « MONITORING OF ENVIRONMENTAL LOW FREQUENCY MAGNETIC FIELDS ». Environmental Engineering and Management Journal 8, no 5 (2009) : 1253–61. http://dx.doi.org/10.30638/eemj.2009.184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Tran, Dai Lam, Van Hong Le, Hoai Linh Pham, Thi My Nhung Hoang, Thi Quy Nguyen, Thien Tai Luong, Phuong Thu Ha et Xuan Phuc Nguyen. « Biomedical and environmental applications of magnetic nanoparticles ». Advances in Natural Sciences : Nanoscience and Nanotechnology 1, no 4 (25 janvier 2011) : 045013. http://dx.doi.org/10.1088/2043-6262/1/4/045013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Birn, J., J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova et al. « Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge ». Journal of Geophysical Research : Space Physics 106, A3 (1 mars 2001) : 3715–19. http://dx.doi.org/10.1029/1999ja900449.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

WEISSKOPF, M. G. « Magnetic Resonance Spectroscopy and Environmental Toxicant Exposure ». Annals of the New York Academy of Sciences 1097, no 1 (1 février 2007) : 179–82. http://dx.doi.org/10.1196/annals.1379.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Lin, Jia-Hui, Zong-Han Wu et Wei-Lung Tseng. « Extraction of environmental pollutants using magnetic nanomaterials ». Analytical Methods 2, no 12 (2010) : 1874. http://dx.doi.org/10.1039/c0ay00575d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Xiao, Kangda, Li Wang, Jun Guo, Maohua Zhu, Xiuchao Zhao, Xianping Sun, Chaohui Ye et Xin Zhou. « Quieting an environmental magnetic field without shielding ». Review of Scientific Instruments 91, no 8 (1 août 2020) : 085107. http://dx.doi.org/10.1063/5.0007464.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Grbic, Jelena, Brian Nguyen, Edie Guo, Jae Bem You, David Sinton et Chelsea M. Rochman. « Magnetic Extraction of Microplastics from Environmental Samples ». Environmental Science & ; Technology Letters 6, no 2 (25 janvier 2019) : 68–72. http://dx.doi.org/10.1021/acs.estlett.8b00671.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yi, Yunqiang, Zhexi Huang, Baizhou Lu, Jingyi Xian, Eric Pokeung Tsang, Wen Cheng, Jianzhang Fang et Zhanqiang Fang. « Magnetic biochar for environmental remediation : A review ». Bioresource Technology 298 (février 2020) : 122468. http://dx.doi.org/10.1016/j.biortech.2019.122468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Cameron, Ivan L., W. Elaine Hardman, Wendell D. Winters, Selma Zimmerman et Arthur M. Zimmerman. « Environmental magnetic fields : Influences on early embryogenesis ». Journal of Cellular Biochemistry 51, no 4 (1 avril 1993) : 417–25. http://dx.doi.org/10.1002/jcb.2400510406.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Aidona, E., S. Pechlivanidou et Ch Pennos. « Environmental magnetism : Application to cave sediments ». Bulletin of the Geological Society of Greece 47, no 2 (24 janvier 2017) : 892. http://dx.doi.org/10.12681/bgsg.11128.

Texte intégral
Résumé :
Environmental magnetism techniques allow a rapid, low cost and sensitive characterization of sediments and can be applied in a wide range of environments. More specific, magnetic properties can be successfully used to reconstruct paleoenvironmental and paleoclimatic conditions in rockshelter and cave sites. Cave sediments, imprint the environmental conditions at the Earth’s surface at the time of deposition since are well protected both at the interior and at the entrance of the cave systems. In addition, many cultural sequences and archaeological artifacts are well preserved in rockshelter and cave sediment records and can be effectively used for paleoenvironmental interpretations. In this study we present data from two different cave sites from Northern Greece. In the first cave (Maronia Cave) magnetic measurements were performed in two cores 80 and 90 cm, respectively, located inside the cave area. High values of magnetic susceptibility are directly linked with the human activity inside the cave, while lower values show deposition under infiltration and fluvial processes. In the second cave (Mikro Eptamilon Cave), magnetic susceptibility and frequency dependent magnetic susceptibility depicted from a sedimentary sequence with a thickness of 200 cm, located in the entrance of the cave. Results lead to conclusions concerning the velocity of the paleo-flow likely related to the paleoclimatic conditions that dominated the broader area.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Nishikawa, Takao, et Ken Sakuta. « Reduction of Environmental Magnetic Field Noise for Detection of Small Magnetic Contaminants ». Journal of Physics : Conference Series 1293 (septembre 2019) : 012054. http://dx.doi.org/10.1088/1742-6596/1293/1/012054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Rahok, Sam Ann, Hirohisa Oneda, Taichi Nakayama, Kazumichi Inoue, Shigeji Osawa, Akio Tanaka et Koichi Ozaki. « Enhancement of Scan Matching Using an Environmental Magnetic Field ». Journal of Robotics and Mechatronics 30, no 4 (20 août 2018) : 532–39. http://dx.doi.org/10.20965/jrm.2018.p0532.

Texte intégral
Résumé :
Scan matching is one of the most reliable localization methods for mobile robots in known environments. However, an unexpected shift in posture remains its major issue. A method that uses an environmental magnetic field, a magnetic field that occurs in the environment, is presented to address this issue. The environmental magnetic field, which mostly refers to the geomagnetic field, is rarely changed by time. This unique property provides a means to enhance scan matching to provide a more robust localization method by using it to compensate the mobile robot’s pose. In this study, we describe how to compensate the mobile robot’s pose with the environmental magnetic field. Through experiments, we show that a mobile robot with the proposed method can recover, even if irregular changes in posture occur during the navigation.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Oikawa, S., A. Haga et K. Yamazaki. « Examination of Environmental Magnetic Fields in Office Space : Measurement of Environmental Magnetic Fields in Power-Receiving and Transformer rooms ». Journal of the Magnetics Society of Japan 30, no 2 (2006) : 316–20. http://dx.doi.org/10.3379/jmsjmag.30.316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Schmidt, M. A. « Assessment of environmental disturbances to the static magnetic field in magnetic resonance installations ». British Journal of Radiology 79, no 941 (mai 2006) : 432–36. http://dx.doi.org/10.1259/bjr/76396327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Xu, Xinwen, Xiaoke Qiang, Hui Zhao et Chaofeng Fu. « Rock magnetic and environmental magnetic data of lacustrine sediments from the Heqing basin ». Data in Brief 29 (avril 2020) : 105107. http://dx.doi.org/10.1016/j.dib.2020.105107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kim, Y. S., et Y. S. Cho. « ENVIRONMENTAL EXPOSURE TO MAGNETIC FIELDS IN TRANSPORTATION SYSTEMS ». Epidemiology 9, Supplement (juillet 1998) : S127. http://dx.doi.org/10.1097/00001648-199807001-00424.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhou, Qingxiang, Jing Li, Mengyun Wang et Danchen Zhao. « Iron-based magnetic nanomaterials and their environmental applications ». Critical Reviews in Environmental Science and Technology 46, no 8 (17 avril 2016) : 783–826. http://dx.doi.org/10.1080/10643389.2016.1160815.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Nestle, Nikolaus, Thomas Baumann et Reinhard Niessner. « Peer Reviewed : Magnetic Resonance Imaging in Environmental Science ». Environmental Science & ; Technology 36, no 7 (avril 2002) : 154A—160A. http://dx.doi.org/10.1021/es0222723.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Tang, Samuel C. N., et Irene M. C. Lo. « Magnetic nanoparticles : Essential factors for sustainable environmental applications ». Water Research 47, no 8 (mai 2013) : 2613–32. http://dx.doi.org/10.1016/j.watres.2013.02.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kaczorowski, D., et M. Koźlik. « Environmental effect on the magnetic behaviour in CePd3Gax ». Physica B : Condensed Matter 259-261 (janvier 1999) : 105–7. http://dx.doi.org/10.1016/s0921-4526(98)00977-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ioan, C., A. Republic of Moldovanu, C. Macovei, Elena Republic of Moldovanu et M. Macoviciuc. « Dynamical cancellation of the environmental magnetic disturbing fields ». Sensors and Actuators A : Physical 59, no 1-3 (avril 1997) : 329–33. http://dx.doi.org/10.1016/s0924-4247(97)80200-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Dong, Jie, Zhenghe Xu et Steven M. Kuznicki. « Magnetic Multi-Functional Nano Composites for Environmental Applications ». Advanced Functional Materials 19, no 8 (23 avril 2009) : 1268–75. http://dx.doi.org/10.1002/adfm.200800982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kim, Byoung Chan, Jinwoo Lee, Wooyong Um, Jaeyun Kim, Jin Joo, Jin Hyung Lee, Ja Hun Kwak et al. « Magnetic mesoporous materials for removal of environmental wastes ». Journal of Hazardous Materials 192, no 3 (septembre 2011) : 1140–47. http://dx.doi.org/10.1016/j.jhazmat.2011.06.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kalia, Susheel, Sarita Kango, Amit Kumar, Yuvaraj Haldorai, Bandna Kumari et Rajesh Kumar. « Magnetic polymer nanocomposites for environmental and biomedical applications ». Colloid and Polymer Science 292, no 9 (8 août 2014) : 2025–52. http://dx.doi.org/10.1007/s00396-014-3357-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Che Nan, Siti Nursyamsulbahria binti, Danial Wan Hazman, Mohd Fuad Miskon, Shafida Abd Hamid, Rosliza Mohd. Salim et Azaima Razali. « Reduced Graphene Oxide Functionalized Magnetic Nanocomposites for Environmental Pollutant Removal ». Materials Science Forum 1076 (8 décembre 2022) : 109–17. http://dx.doi.org/10.4028/p-io4k1f.

Texte intégral
Résumé :
Nowadays, the excessive and uncontrolled discharge of chemicals are imposing major health threats. The demands for clean and safe water amplifies the need to develop improved technologies for environmental contaminant removal. Considering the limitations of conventional methods for contaminants removal, we have prepared magnetic iron oxide nanoparticles functionalised with reduced graphene oxide as a potential material for environmental pollutants removal. The magnetic properties in potential adsorbent materials are highly desirable due to several advantages. Among which are their large adsorptive surface area, low diffusion resistance, high adsorption capacity and fast separation in large volumes of solution. The surface functionalised magnetic iron oxide nanoparticles (MNP) were fabricated using a one-pot hydrothermal method by adding reduced graphene oxide (rGO) into the reaction system. The graphene oxide were reduced prior to the addition in the hydrothemal decomposition step. The resultant rGO-MNP nanocomposites were characterised using FT-IR, SEM and VSM to investigate the functional groups, morphology and magnetic properties, resepectively. We also demonstrated the potential of the hybridised magnetic material with hydrophobic reduced graphene oxide for environmental pollutant removal.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Jordanova, Diana, Viktor Hoffmann et Karl Thomas Fehr. « Integrated Study of Single Anthropogenic Particles—Magnetic and Environmental Implications ». Environmental Chemistry 1, no 1 (2004) : 31. http://dx.doi.org/10.1071/en04007.

Texte intégral
Résumé :
Environmental Context.Industrial metal production, thermoelectric power plants, and similar technologies can release a large amount of particles (with sizes up to the millimetre scale) of heavy metals into the local surrounds. Up to 10% of these particles are strongly magnetic and easily detectable above the background magnetism. A map of the regional magnetic signals, which would be relatively simple and cheap to produce, provides a guide to pollution ‘hotspots’. But it’s not that simple: The authors integrate chemistry, microscopy, and magnetism studies of single particles of sediments from the Danube River to show rock magnetic parameters established for natural rocks cannot be directly used on environmental man-made particles. Abstract.The presence of significant amounts of strongly magnetic phases in anthropogenic particulate industrial emissions allows the use of magnetic methods for fast and cheap detection of environmental pollution. The aim of our study is to check the validity of some of the constitutive magnetic parameters and their ratios used for estimation of grain sizes and distance from the pollution source. The results from our integrated magnetic, microscopic, and microchemical study on large, single, anthropogenic particles show that classical rock magnetic parameters (Mrs/Mr, Bcr/Bc) for mineral magnetic characterization cannot be directly applied to the anthropogenic phases. This results from their inhomogeneous composition, often with dendritic exsolution of iron oxides within an aluminosilicate matrix.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Cheng, Yuan, Yaozhi Luo, Ruihong Shen, Liang Zhao et Weiyong Zhou. « Measurement and Analysis on Magnetic Field Influence of Substation for Magnetic Shielding Device ». Applied Sciences 13, no 5 (1 mars 2023) : 3161. http://dx.doi.org/10.3390/app13053161.

Texte intégral
Résumé :
The residual magnetic field in a magnetic shielding device with a multilayer high permeability material (permalloy) structure can be obtained at the nanotesla (nT) level or even lower. At present, in the process of designing a magnetic shielding device, most of the external environmental magnetic field settings are set at the size of the Earth’s environmental magnetic field, but the instruments inside the magnetic shielding device need to be powered, the active compensation coil needs to be powered, and the degaussing coil of passive shielding layer needs to be powered, so substations need to be used around magnetic shielding devices. The magnetic field generated by the substation will affect the magnetic shielding device, so this paper analyzes and measures the magnetic field generated by the substation. Firstly, the finite element model of a substation is established, and the influence of different substations on the environmental magnetic field is analyzed by changing the power. Secondly, the test method of a substation environment magnetic field is determined. Finally, the site test was carried out to measure the influence of different power substations and different distances on the magnetic field, and its influence on the magnetic shielding device was analyzed, which provided an important basis for the construction of the magnetic shielding device.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Takiya, Takashi, et Tsuyoshi Uchiyama. « Environmental Magnetic Noise Reduction Effect of the Active Magnetic Shielding System for MI Gradiometer ». IEEJ Transactions on Fundamentals and Materials 137, no 8 (2017) : 454–59. http://dx.doi.org/10.1541/ieejfms.137.454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

NAKAHIRA, Atsushi, Shigeki NISHIDA et Koji FUKUNISHI. « Synthesis of Magnetic Activated Carbons for Removal of Environmental Endocrine Disrupter Using Magnetic Vector ». Journal of the Ceramic Society of Japan 114, no 1325 (2006) : 135–37. http://dx.doi.org/10.2109/jcersj.114.135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Linh, Pham Hoai, Do Hung Manh, Tran Dai Lam, Le Van Hong, Nguyen Xuan Phuc, Nguyen Anh Tuan, Nguyen Thanh Ngoc et Vu Anh Tuan. « Magnetic nanoparticles : study of magnetic heating and adsorption/desorption for biomedical and environmental applications ». International Journal of Nanotechnology 8, no 3/4/5 (2011) : 399. http://dx.doi.org/10.1504/ijnt.2011.038215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

LU, Sheng-Gao, et Shi-Qing BAI. « Magnetic Characterization and Magnetic Mineralogy of the Hangzhou Urban Soils and Its Environmental Implications ». Chinese Journal of Geophysics 51, no 3 (mai 2008) : 549–57. http://dx.doi.org/10.1002/cjg2.1245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Li, Xiang, Huaili Zheng, Zhengan Zhang, Chuanliang Zhao, Yuhao Zhou, Fang Li et Wei Chen. « Research Progress of Magnetic Polymer Microspheres in Environmental Engineering ». Mini-Reviews in Organic Chemistry 13, no 2 (6 mai 2016) : 118–25. http://dx.doi.org/10.2174/1570193x13666160324155319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Hirota, Minoru, et Katsuyuki Ninomiya. « Applications of nuclear magnetic resonance spectroscopy in environmental science. » Japan journal of water pollution research 8, no 12 (1985) : 781–85. http://dx.doi.org/10.2965/jswe1978.8.781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hayashi, Amane, Hiroshi Oyama, Yoshihiro Hirata et Shinya Kuriki. « Reduction of Environmental Magnetic Field Noise for Biomagnetic Measurements ». IEEJ Transactions on Electronics, Information and Systems 121, no 11 (2001) : 1704–10. http://dx.doi.org/10.1541/ieejeiss1987.121.11_1704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Amrutha, K., Anish Kumar Warrier, K. Sandeep, Arya Jyothinath, A. L. Ananthapadmanabha et R. Shankar. « Environmental Magnetic Properties of Lateritic Soils from Southwestern India ». Eurasian Soil Science 54, no 2 (février 2021) : 238–48. http://dx.doi.org/10.1134/s1064229321020022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Mokhodoeva, O. B., V. V. Maksimova, R. Kh Dzhenloda et V. M. Shkinev. « Magnetic Nanoparticles Modified by Ionic Liquids in Environmental Analysis ». Journal of Analytical Chemistry 76, no 6 (juin 2021) : 675–84. http://dx.doi.org/10.1134/s1061934821060058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Shekhovtsova, E. V., V. V. Romanko et S. L. Kim. « Environmental aspects of the magnetic influence on oil sludge ». Environmental Protection in Oil and Gas Complex, no 5 (2021) : 46–50. http://dx.doi.org/10.33285/2411-7013-2021-5(302)-46-50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Longzhi Jiang et T. J. Havens. « Environmental Vibration Induced Magnetic Field Disturbance in MRI Magnet ». IEEE Transactions on Applied Superconductivity 22, no 3 (juin 2012) : 4400704. http://dx.doi.org/10.1109/tasc.2011.2177051.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Rabinovici, R., B. Z. Kaplan, Y. Karon et R. Karo. « An instrument for environmental 50 Hz magnetic fields measurements ». IEEE Transactions on Magnetics 28, no 5 (septembre 1992) : 2476–78. http://dx.doi.org/10.1109/20.179531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Nishijima, Shigheiro. « Magnetic Force Control Technique for Recycling and Environmental Preservation ». Progress in Superconductivity and Cryogenics 14, no 4 (30 novembre 2012) : 1–4. http://dx.doi.org/10.9714/sac.2012.14.4.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie