Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Engel conditions.

Articles de revues sur le sujet « Engel conditions »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Engel conditions ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

RAMEZAN-NASSAB, M., et D. KIANI. « RINGS SATISFYING GENERALIZED ENGEL CONDITIONS ». Journal of Algebra and Its Applications 11, no 06 (14 novembre 2012) : 1250121. http://dx.doi.org/10.1142/s0219498812501216.

Texte intégral
Résumé :
Let R be an associative ring and let x, y ∈ R. Define the generalized commutators as follows: [x, 0y] = x and [x, ky] = [x, k-1y]y - y[x, k-1y](k = 1, 2, …). In this paper we study some generalized Engel rings, i.e. [Formula: see text]-rings (satisfying [xm(x, y), k(x, y)y] = 0), [Formula: see text]-rings (satisfying [xm(x, y), k(x, y)yn(x, y)] = 0) and [Formula: see text]-rings (satisfying [xm(x, y), k(x, y)yn(x, y)]r(x, y) = 0). Among other results, it is proved that every Artinian [Formula: see text]-ring is strictly Lie-nilpotent. Also, we show that in each of the following cases R has nil commutator ideal: (1) if R is a [Formula: see text]-ring with unity and k, n independent of y; (2) if R is a locally bounded [Formula: see text]-ring (defined below); (3) if R is an algebraic algebra over a field in which R* is a bounded Engel group or a soluble group.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lanski, Charles. « Skew Derivations and Engel Conditions ». Communications in Algebra 42, no 1 (18 octobre 2013) : 139–52. http://dx.doi.org/10.1080/00927872.2012.707719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mattarei, Sandro. « Engel conditions and symmetric tensors ». Linear and Multilinear Algebra 59, no 4 (avril 2011) : 441–49. http://dx.doi.org/10.1080/03081081003621295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Amberg, Bernhard, et Yaroslav P. Sysak. « Radical Rings with Engel Conditions ». Journal of Algebra 231, no 1 (septembre 2000) : 364–73. http://dx.doi.org/10.1006/jabr.2000.8370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Picelli, Enrico. « Semilocal rings with Engel conditions ». Archiv der Mathematik 87, no 4 (octobre 2006) : 289–94. http://dx.doi.org/10.1007/s00013-006-1731-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fan, Yun, et Jinke Hai. « A Note on ?-Engel Conditions ». Southeast Asian Bulletin of Mathematics 25, no 2 (octobre 2001) : 223–28. http://dx.doi.org/10.1007/s10012-001-0223-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shumyatsky, Pavel. « Orderable groups with Engel-like conditions ». Journal of Algebra 499 (avril 2018) : 311–20. http://dx.doi.org/10.1016/j.jalgebra.2017.12.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Koşan, M. Tamer, Tsiu-Kwen Lee et Yiqiang Zhou. « Identities with Engel conditions on derivations ». Monatshefte für Mathematik 165, no 3-4 (21 octobre 2010) : 543–56. http://dx.doi.org/10.1007/s00605-010-0252-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Calin, Ovidiu, Der-Chen Chang et Jishan Hu. « Integrability conditions on Engel-type manifolds ». Analysis and Mathematical Physics 5, no 3 (23 juin 2015) : 217–31. http://dx.doi.org/10.1007/s13324-015-0107-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ramezan-Nassab, Mojtaba. « Group Rings Satisfying Generalized Engel Conditions ». Mathematical Researches 6, no 1 (1 mai 2020) : 57–64. http://dx.doi.org/10.52547/mmr.6.1.57.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Chuang, Chen-Lian, Ming-Chu Chou et Cheng-Kai Liu. « Skew derivations with annihilating Engel conditions ». Publicationes Mathematicae Debrecen 68, no 1-2 (1 janvier 2006) : 161–70. http://dx.doi.org/10.5486/pmd.2006.3255.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

QUEK, S. G., K. B. WONG et P. C. WONG. « ON n-ENGEL PAIR SATISFYING CERTAIN CONDITIONS ». Journal of Algebra and Its Applications 13, no 04 (9 janvier 2014) : 1350135. http://dx.doi.org/10.1142/s0219498813501351.

Texte intégral
Résumé :
Let G be a group and h, g ∈ G. The 2-tuple (h, g) is said to be an n-Engel pair, n ≥ 2, if h = [h,n g], g = [g,n h] and h ≠ 1. In this paper, we prove that if (h, g) is an n-Engel pair, hgh-2gh = ghg and ghg-2hg = hgh, then n = 2k where k = 4 or k ≥ 6. Furthermore, the subgroup generated by {h, g} is determined for k = 4, 6, 7 and 8.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chang, Jui-Chi. « GENERALIZED SKEW DERIVATIONS WITH ANNIHILATING ENGEL CONDITIONS ». Taiwanese Journal of Mathematics 12, no 7 (octobre 2008) : 1641–50. http://dx.doi.org/10.11650/twjm/1500405076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lee, Pjek-Hwee, et Tsiu-Kwen Lee. « Derivations with Engel conditions on multilinear polynomials ». Proceedings of the American Mathematical Society 124, no 9 (1996) : 2625–29. http://dx.doi.org/10.1090/s0002-9939-96-03351-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Riley, David M. « Generalised nilpotence conditions inn-engel lie algebras ». Communications in Algebra 28, no 10 (janvier 2000) : 4619–34. http://dx.doi.org/10.1080/00927870008827108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Chen, Hung-Yuan. « Generalized Derivations with Engel Conditions on Polynomials ». Communications in Algebra 39, no 10 (octobre 2011) : 3709–21. http://dx.doi.org/10.1080/00927872.2010.510817.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bastos, Raimundo, et Pavel Shumyatsky. « On profinite groups with Engel-like conditions ». Journal of Algebra 427 (avril 2015) : 215–25. http://dx.doi.org/10.1016/j.jalgebra.2015.01.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kappe, Luise-Charlotte, et Gunnar Traustason. « Subnormality conditions in non-torsion groups ». Bulletin of the Australian Mathematical Society 59, no 3 (juin 1999) : 459–65. http://dx.doi.org/10.1017/s0004972700033141.

Texte intégral
Résumé :
According to results of Heineken and Stadelmann, a non-torsion group is a 2-Baer group if and only if it is 2-Engel, and it has all subgroups 2-subnormal if and only if it is nilpotent of class 2. We extend some of these results to values of n greater than 2. Any non-torsion group which is an n-Baer group is an n-Engel group. The converse holds for n = 3, and for all n in the case of metabelian groups. A non-torsion group without involutions having all subgroups 3-subnormal has nilpotency class 4, and this bound is sharp.
Styles APA, Harvard, Vancouver, ISO, etc.
19

HAVAS, GEORGE, et M. R. VAUGHAN-LEE. « 4-ENGEL GROUPS ARE LOCALLY NILPOTENT ». International Journal of Algebra and Computation 15, no 04 (août 2005) : 649–82. http://dx.doi.org/10.1142/s0218196705002475.

Texte intégral
Résumé :
Questions about nilpotency of groups satisfying Engel conditions have been considered since 1936, when Zorn proved that finite Engel groups are nilpotent. We prove that 4-Engel groups are locally nilpotent. Our proof makes substantial use of both hand and machine calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Liu, Cheng-Kai, et Wen-Kwei Shiue. « On the Centralizers of Derivations with Engel Conditions ». Communications in Algebra 41, no 5 (20 mai 2013) : 1636–46. http://dx.doi.org/10.1080/00927872.2011.649223.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Meriano, Maurizio, et Chiara Nicotera. « On Certain Weak Engel-Type Conditions in Groups ». Communications in Algebra 42, no 10 (14 mai 2014) : 4241–47. http://dx.doi.org/10.1080/00927872.2013.806522.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bastos, Raimundo. « On Residually Finite Groups with Engel-like Conditions ». Communications in Algebra 44, no 10 (3 juin 2016) : 4177–84. http://dx.doi.org/10.1080/00927872.2015.1087014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

MORAVEC, PRIMOŽ. « ON NONABELIAN TENSOR ANALOGUES OF 2-ENGEL CONDITIONS ». Glasgow Mathematical Journal 47, no 1 (février 2005) : 77–86. http://dx.doi.org/10.1017/s0017089504002083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Liu, Cheng-Kai. « DERIVATIONS WITH ENGEL AND ANNIHILATOR CONDITIONS ON MULTILINEAR POLYNOMIALS ». Communications in Algebra 33, no 3 (9 mars 2005) : 719–25. http://dx.doi.org/10.1081/agb-200049880.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Abdollahi, Alireza. « Some Engel conditions on infinite subsets of certain groups ». Bulletin of the Australian Mathematical Society 62, no 1 (août 2000) : 141–48. http://dx.doi.org/10.1017/s0004972700018554.

Texte intégral
Résumé :
Let k be a positive integer. We denote by ɛk(∞) the class of all groups in which every infinite subset contains two distinct elements x, y such that [x,k y] = 1. We say that a group G is an -group provided that whenever X, Y are infinite subsets of G, there exists x ∈ X, y ∈ Y such that [x,k y] = 1. Here we prove that:(1) If G is a finitely generated soluble group, then G ∈ ɛ3(∞) if and only if G is finite by a nilpotent group in which every two generator subgroup is nilpotent of class at most 3.(2) If G is a finitely generated metabelian group, then G ∈ ɛk(∞) if and only if G/Zk (G) is finite, where Zk (G) is the (k + 1)-th term of the upper central series of G.(3) If G is a finitely generated soluble ɛk(∞)-group, then there exists a positive integer t depending only on k such that G/Zt (G) is finite.(4) If G is an infinite -group in which every non-trivial finitely generated subgroup has a non-trivial finite quotient, then G is k-Engel. In particular, G is locally nilpotent.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Shiue, Wen-Kwei. « Annihilators of derivations with Engel conditions on lie ideals ». Rendiconti del Circolo Matematico di Palermo 52, no 3 (octobre 2003) : 505–9. http://dx.doi.org/10.1007/bf02872768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Albaş, Emine, Nurcan Argaç et Vincenzo De Filippis. « Generalized Derivations with Engel Conditions on One-Sided Ideals ». Communications in Algebra 36, no 6 (27 mai 2008) : 2063–71. http://dx.doi.org/10.1080/00927870801949328.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wang, Yu. « A Generalization of Engel Conditions with Derivations in Rings ». Communications in Algebra 39, no 8 (août 2011) : 2690–96. http://dx.doi.org/10.1080/00927872.2010.489536.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Huang, Shuliang. « Derivations with engel conditions in prime and semiprime rings ». Czechoslovak Mathematical Journal 61, no 4 (décembre 2011) : 1135–40. http://dx.doi.org/10.1007/s10587-011-0053-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chacron, M., et T. K. Lee. « Open questions concerning antiautomorphisms of division rings with quasi-generalized Engel conditions ». Journal of Algebra and Its Applications 18, no 09 (17 juillet 2019) : 1950167. http://dx.doi.org/10.1142/s0219498819501676.

Texte intégral
Résumé :
Let [Formula: see text] be a noncommutative division ring with center [Formula: see text], which is algebraic, that is, [Formula: see text] is an algebraic algebra over the field [Formula: see text]. Let [Formula: see text] be an antiautomorphism of [Formula: see text] such that (i) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are positive integers depending on [Formula: see text]. If, further, [Formula: see text] has finite order, it was shown in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (2018) 1850145 (19 pages)] that [Formula: see text] is commuting, that is, [Formula: see text], all [Formula: see text]. Posed in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (2018) 1850145 (19 pages)] is the question which asks as to whether the finite order requirement on [Formula: see text] can be dropped. We provide here an affirmative answer to the question. The second major result of this paper is concerned with a nonnecessarily algebraic division ring [Formula: see text] with an antiautomorphism [Formula: see text] satisfying the stronger condition (ii) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are fixed positive integers. It was shown in [T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45(9) (2017) 4030–4036] that if, further, [Formula: see text] has finite order then [Formula: see text] is commuting. We show here, that again the finite order assumption on [Formula: see text] can be lifted answering thus in the affirmative the open question (see Question 2.11 in [T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45(9) (2017) 4030–4036]).
Styles APA, Harvard, Vancouver, ISO, etc.
31

QUEK, S. G., K. B. WONG et P. C. WONG. « ON CERTAIN PAIRS OF NON-ENGEL ELEMENTS IN FINITE GROUPS ». Journal of Algebra and Its Applications 12, no 05 (7 mai 2013) : 1250213. http://dx.doi.org/10.1142/s0219498812502131.

Texte intégral
Résumé :
Let G be a group and h, g ∈ G. The 2-tuple (h, g) is said to be an n-Engel pair if h = [h,n g] and g = [g,n h]. In this paper, we will study the subgroup generated by the n-Engel pair under certain conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chiappori, Pierre-Andre, et Jesse Naidoo. « The Engel Curves of Non-Cooperative Households ». Economic Journal 130, no 627 (8 janvier 2020) : 653–74. http://dx.doi.org/10.1093/ej/uez069.

Texte intégral
Résumé :
Abstract We provide a set of necessary and sufficient conditions for a system of Engel curves to have been generated by a non-cooperative model of family behaviour. These conditions fully characterise the local behaviour of household-level consumption in the cross-section, i.e., as a function of total income and distribution factors. In this setting, any demand system compatible with a non-cooperative model is also compatible with a collective model, but the converse is not true. We describe how these nested conditions may be tested using standard instrumental-variables strategies.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mohammadzadeh, Elahe, et Rajab Ali Borzooei. « Engel, Nilpotent and Solvable BCI-algebras ». Analele Universitatii "Ovidius" Constanta - Seria Matematica 27, no 1 (1 mars 2019) : 169–92. http://dx.doi.org/10.2478/auom-2019-0009.

Texte intégral
Résumé :
Abstract In this paper, we define the concepts of Engel, nilpotent and solvable BCI-algebras and investigate some of their properties. Specially, we prove that any BCK-algebra is a 2-Engel. Then we define the center of a BCI-algebra and prove that in a nilpotent BCI-algebra X, each minimal closed ideal of X is contained in the center of X. In addition, with some conditions, we show that every finite BCI-algebra is solvable. Finally, we investigate the relations among Engel, nilpotent and solvable BCI(BCK)-algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Pehlivan, Taylan, et Emine Albas. « Annihilators of skew derivations with Engel conditions on prime rings ». Czechoslovak Mathematical Journal 70, no 2 (16 décembre 2019) : 587–603. http://dx.doi.org/10.21136/cmj.2019.0412-18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Chou, Ming-Chu, et Cheng-Kai Liu. « Annihilators of Skew Derivations with Engel Conditions on Lie Ideals ». Communications in Algebra 44, no 2 (15 décembre 2015) : 898–911. http://dx.doi.org/10.1080/00927872.2014.990028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chacron, M. « More on involutions with local Engel or power commuting conditions ». Communications in Algebra 45, no 8 (28 octobre 2016) : 3503–14. http://dx.doi.org/10.1080/00927872.2016.1237641.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

De Filippis, Vincenzo, et Giovanni Scudo. « Annihilating and Engel conditions on right ideals with generalized derivations ». Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 57, no 1 (29 janvier 2015) : 155–72. http://dx.doi.org/10.1007/s13366-015-0236-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Shiue, Wen-Kwei. « Annihilators of derivations with Engel conditions on one-sided ideals ». Publicationes Mathematicae Debrecen 62, no 1-2 (1 janvier 2003) : 237–43. http://dx.doi.org/10.5486/pmd.2003.2751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

De Filippis, Vincenzo. « Engel-Type Conditions Involving Two Generalized Skew Derivations in Prime Rings ». Communications in Algebra 44, no 7 (18 février 2016) : 3139–52. http://dx.doi.org/10.1080/00927872.2015.1065849.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Scudo, Giovanni. « Generalized derivations with annihilating and centralizing Engel conditions on Lie ideals ». Rendiconti del Circolo Matematico di Palermo 61, no 3 (13 juin 2012) : 343–53. http://dx.doi.org/10.1007/s12215-012-0094-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Acciarri, Cristina, et Danilo Silveira. « Engel-like conditions in fixed points of automorphisms of profinite groups ». Annali di Matematica Pura ed Applicata (1923 -) 199, no 1 (10 juin 2019) : 187–97. http://dx.doi.org/10.1007/s10231-019-00872-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Demir, Cagri, et Nurcan Argac. « A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS ». Journal of the Korean Mathematical Society 47, no 3 (1 mai 2010) : 483–94. http://dx.doi.org/10.4134/jkms.2010.47.3.483.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Rania, Francesco. « A note on sandwich Engel conditions on Lie ideals in semiprime rings ». International Mathematical Forum 8 (2013) : 1503–8. http://dx.doi.org/10.12988/imf.2013.37149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

MAL'CEV, YURI N. « JUST NON COMMUTATIVE VARIETIES OF OPERATOR ALGEBRAS AND RINGS WITH SOME CONDITIONS ON NILPOTENT ELEMENTS ». Tamkang Journal of Mathematics 27, no 1 (1 mars 1996) : 59–65. http://dx.doi.org/10.5556/j.tkjm.27.1996.4362.

Texte intégral
Résumé :
In §1 it is given a classification of Just noncommutative varieties of associative over algebras over commutative Jacobson ring with unity. In [1], [4] are given different proofs of the commutativity of a finite ring with central nilpotent elements. In §2 we give generalizations of these results for infinite rings and for the case of Engel identity.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Liau, Pao-Kuei, et Cheng-Kai Liu. « An Engel condition with b-generalized derivations for Lie ideals ». Journal of Algebra and Its Applications 17, no 03 (5 février 2018) : 1850046. http://dx.doi.org/10.1142/s0219498818500469.

Texte intégral
Résumé :
Let [Formula: see text] be a prime ring with the extended centroid [Formula: see text], [Formula: see text] a noncommutative Lie ideal of [Formula: see text] and [Formula: see text] a nonzero [Formula: see text]-generalized derivation of [Formula: see text]. For [Formula: see text], let [Formula: see text]. We prove that if [Formula: see text] for all [Formula: see text], where [Formula: see text] are fixed positive integers, then there exists [Formula: see text] such that [Formula: see text] for all [Formula: see text] except when [Formula: see text], the [Formula: see text] matrix ring over a field [Formula: see text]. The analogous result for generalized skew derivations is also described. Our theorems naturally generalize the cases of derivations and skew derivations obtained by Lanski in [C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 75–80, Skew derivations and Engel conditions, Comm. Algebra 42 (2014), 139–152.]
Styles APA, Harvard, Vancouver, ISO, etc.
46

Dhara, Basudeb, et Vincenzo De Filippis. « Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings ». Communications in Algebra 48, no 1 (5 juillet 2019) : 154–67. http://dx.doi.org/10.1080/00927872.2019.1635608.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mohammadzadeh, E., G. Muhiuddin, J. Zhan et R. A. Borzooei. « Nilpotent fuzzy lie ideals ». Journal of Intelligent & ; Fuzzy Systems 39, no 3 (7 octobre 2020) : 4071–79. http://dx.doi.org/10.3233/jifs-200211.

Texte intégral
Résumé :
In this paper, we introduce a new definition for nilpotent fuzzy Lie ideal, which is a well-defined extension of nilpotent Lie ideal in Lie algebras, and we name it a good nilpotent fuzzy Lie ideal. Then we prove that a Lie algebra is nilpotent if and only if any fuzzy Lie ideal of it, is a good nilpotent fuzzy Lie ideal. In particular, we construct a nilpotent Lie algebra via a good nilpotent fuzzy Lie ideal. Also, we prove that with some conditions, every good nilpotent fuzzy Lie ideal is finite. Finally, we define an Engel fuzzy Lie ideal, and we show that every Engel fuzzy Lie ideal of a finite Lie algebra is a good nilpotent fuzzy Lie ideal. We think that these notions could be useful to solve some problems of Lie algebras with nilpotent fuzzy Lie ideals.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Dhara, Basudeb, Krishna Gopal Pradhan et Shailesh Kumar Tiwari. « Engel type identities with generalized derivations in prime rings ». Asian-European Journal of Mathematics 11, no 04 (août 2018) : 1850055. http://dx.doi.org/10.1142/s1793557118500559.

Texte intégral
Résumé :
Let [Formula: see text] be a noncommutative prime ring with its Utumi ring of quotients [Formula: see text], [Formula: see text] the extended centroid of [Formula: see text], [Formula: see text] a generalized derivation of [Formula: see text] and [Formula: see text] a nonzero ideal of [Formula: see text]. If [Formula: see text] satisfies any one of the following conditions: (i) [Formula: see text], [Formula: see text], [Formula: see text], (ii) [Formula: see text], where [Formula: see text] is a fixed integer, then one of the following holds: (1) there exists [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (2) [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (3) char [Formula: see text], [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and an outer derivation [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text].
Styles APA, Harvard, Vancouver, ISO, etc.
49

Engel, Richard, Clain Jones et Rosie Wallander. « Ammonia volatilization losses were small after mowing field peas in dry conditions ». Canadian Journal of Soil Science 93, no 2 (mai 2013) : 239–42. http://dx.doi.org/10.4141/cjss2012-091.

Texte intégral
Résumé :
Engel, R., Jones, C. and Wallander, R. 2013. Ammonia volatilization losses were small after mowing field peas in dry conditions. Can. J. Soil Sci. 93: 239–242. Ammonia losses following termination of peas (Pisum sativum L.) by mowing were measured using a micrometeorological mass-balance approach. Field trials were conducted during two seasons in a semiarid climate. Plant N in the above ground biomass was 105 and 79 kg N ha−1 in 2011 and 2012, respectively. Vertical NH3 flux estimates were nominal (0.3 to 1.7 g N ha−1 h−1) in the 2 wk following mowing. Cumulative NH3 loss represented 0.3 to 0.5% of the N in plant biomass, indicating that N fertility was not diminished by NH3 volatilization in this dry climate.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Rasyid, Mohtar, Anita Kristina, Sutikno ., Sunaryati . et Tutik Yuliani. « Poverty Conditions and Patterns of Consumption : An Engel Function Analysis in East Java and Bali, Indonesia ». Asian Economic and Financial Review 10, no 10 (2020) : 1062–76. http://dx.doi.org/10.18488/journal.aefr.2020.1010.1062.1076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie