Livres sur le sujet « Energy and climate target »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Energy and climate target.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs livres pour votre recherche sur le sujet « Energy and climate target ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Pittock, Jamie, Karen Hussey et Stephen Dovers, dir. Climate, Energy and Water. Cambridge : Cambridge University Press, 2015. http://dx.doi.org/10.1017/cbo9781139248792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

North, Gerald R., et Kwang-Yul Kim. Energy Balance Climate Models. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527698844.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bret, Antoine. The Energy-Climate Continuum. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07920-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pollution, Great Britain Royal Commission on Environmental. Energy : The changing climate. [London] : Stationery Office, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gabriel, Paul Fati. Form, energy and climate. Berkeley, CA : Center for Environmental Design Research, University of California at Berkeley, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Energy, environment, and climate. New York, N.Y : W. W. Norton & Company, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Energy, environment, and climate. 2e éd. New York : W.W. Norton & Company, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kuzemko, Caroline. The Energy Security-Climate Nexus. London : Palgrave Macmillan UK, 2013. http://dx.doi.org/10.1057/9781137307835.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Krebs, Heinz-Adalbert, et Patricia Hagenweiler. Energy Resilience and Climate Protection. Wiesbaden : Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37564-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Quaschning, Volker. Renewable Energy and Climate Change. Chichester, UK : John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9781119994381.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bardazzi, Rossella, Maria Grazia Pazienza et Alberto Tonini, dir. European Energy and Climate Security. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21302-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kerr, Julie. Introduction to Energy and Climate. Boca Raton : Taylor & Francis, [2017] : CRC Press, 2017. http://dx.doi.org/10.1201/9781315151885.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Srivastav, Asheem. Energy Dynamics and Climate Mitigation. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8940-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Santarius, Tilman, Hans Jakob Walnum et Carlo Aall, dir. Rethinking Climate and Energy Policies. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38807-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bush, Martin J. Climate Change and Renewable Energy. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15424-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Deb, Dipankar, Ambesh Dixit et Laltu Chandra, dir. Renewable Energy and Climate Change. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9578-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Cherian, Anilla. Energy and Global Climate Change. Chichester, UK : John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118846070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Deutch, John M. Energy security and climate change. Washington, D.C : Trilateral Commission, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

(Netherlands), Adviesraad Internationale Vraagstukken. Climate, energy and poverty reduction. The Hague, the Netherlands : the council, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

1949-, Greene David Lloyd, dir. Energy and global climate change. New York : Pergamon Press, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Agency, International Energy, et Organisation for Economic Co-operation and Development., dir. Transport, energy, and climate change. Paris : OECD, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Energy in a changing climate. Dural Delivery Centre, N.S.W : Rosenberg, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

(Netherlands), Adviesraad Internationale Vraagstukken. Climate, energy and poverty reduction. The Hague, the Netherlands : the council, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Renewable energy and climate change. Chichester, West Sussex, U.K : Wiley, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Harris, Peter. Energy monitoring and target setting using CUSUM. Cambridge : Cheriton Technology Publications, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Financing global climate change mitigation. New York : United Nations, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Giannakidis, George, Maryse Labriet, Brian Ó Gallachóir et GianCarlo Tosato, dir. Informing Energy and Climate Policies Using Energy Systems Models. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16540-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Energy & climate : How to achieve a successful energy transition. Hoboken, NJ : Wiley, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Crastan, Valentin. Global Energy Demand and 2-degree Target, Report 2014. Springer, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Crastan, Valentin. Global Energy Demand and 2-Degree Target, Report 2014. Springer, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Crastan, Valentin. Global Energy Demand and 2-Degree Target, Report 2014. Springer, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Barton, Barry, et Jennifer Campion. Climate Change Legislation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822080.003.0002.

Texte intégral
Résumé :
Climate change is a particularly difficult policy problem, being long term and multifaceted. This chapter explores the proposition that well-crafted laws make it easier to make climate change policy that is coordinated, systematic, durable, and likely to encourage suitable energy innovation. Without dictating content, it identifies five elements for such legislation: greenhouse gas targets that have legal significance; instruments such as carbon budgets that impel early action towards long-term targets; requirements to identify the policies and measures that will reach those targets; requirements for decision makers in different sectors to pursue climate change targets; and rules for the information base. It concludes that laws reflecting these elements can improve the process of climate change policy making.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Āzis, Reinis. A Breath of Fresh Air for the European Green Deal : Energy Efficiency and Climate Neutrality Factors. RTU Press, 2021. http://dx.doi.org/10.7250/9789934226809.

Texte intégral
Résumé :
The topics covered and the research framework as such provide multiple level takeaways regarding energy efficiency and climate neutrality. The research, therefore, elaborates on concepts central to the academic debate at the time of the writing and undercuts patterns and proposals relevant for multiple actors within the local and global energy market. In fact, the research develops broader discussion regarding any strategic energy-efficiency related goal and the complexity and multiple threads that meeting such a goal would entail. The research also explicitly elaborates on the role of energy efficiency in both climate transition and energy system transformation. In addition, it uncovers the scope of various policies implemented on a local level and discusses their role in meeting the climate targets in medium and long-term. Furthermore, the research also elaborates on the role of bioeconomy and climate neutrality.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Buchan, David. 14. Energy Policy Sharp Challenges and Rising Ambitions. Oxford University Press, 2017. http://dx.doi.org/10.1093/hepl/9780199689675.003.0014.

Texte intégral
Résumé :
This chapter examines three strands of the European Union’s energy policy: the internal energy market, energy security, and climate change. Energy policy has rapidly gained in importance for the EU, as it faces the challenges of creating an internal energy market, increasing energy security, and playing an active role in combating climate change. Reform of the energy market has been a constant activity since the late 1980s and has been based on liberalizing cross-border competition, but this could be increasingly undermined by member-state intervention and subsidy to promote renewable energy and to ensure adequate back-up power. Efforts to curb energy use and to develop a low-carbon economy are at the heart of Europe’s new programmes and targets to combat climate change. The chapter shows that each of the three strands of the EU’s energy policy involve different policy-making communities and illustrate a range of different policy modes.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Fuss, Sabine. The 1.5°C Target, Political Implications, and the Role of BECCS. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.585.

Texte intégral
Résumé :
The 2°C target for global warming had been under severe scrutiny in the run-up to the climate negotiations in Paris in 2015 (COP21). Clearly, with a remaining carbon budget of 470–1,020 GtCO2eq from 2015 onwards for a 66% probability of stabilizing at concentration levels consistent with remaining below 2°C warming at the end of the 21st century and yearly emissions of about 40 GtCO2 per year, not much room is left for further postponing action. Many of the low stabilization pathways actually resort to the extraction of CO2 from the atmosphere (known as negative emissions or Carbon Dioxide Removal [CDR]), mostly by means of Bioenergy with Carbon Capture and Storage (BECCS): if the biomass feedstock is produced sustainably, the emissions would be low or even carbon-neutral, as the additional planting of biomass would sequester about as much CO2 as is generated during energy generation. If additionally carbon capture and storage is applied, then the emissions balance would be negative. Large BECCS deployment thus facilitates reaching the 2°C target, also allowing for some flexibility in other sectors that are difficult to decarbonize rapidly, such as the agricultural sector. However, the large reliance on BECCS has raised uneasiness among policymakers, the public, and even scientists, with risks to sustainability being voiced as the prime concern. For example, the large-scale deployment of BECCS would require vast areas of land to be set aside for the cultivation of biomass, which is feared to conflict with conservation of ecosystem services and with ensuring food security in the face of a still growing population.While the progress that has been made in Paris leading to an agreement on stabilizing “well below 2°C above pre-industrial levels” and “pursuing efforts to limit the temperature increase to 1.5°C” was mainly motivated by the extent of the impacts, which are perceived to be unacceptably high for some regions already at lower temperature increases, it has to be taken with a grain of salt: moving to 1.5°C will further shrink the time frame to act and BECCS will play an even bigger role. In fact, aiming at 1.5°C will substantially reduce the remaining carbon budget previously indicated for reaching 2°C. Recent research on the biophysical limits to BECCS and also other negative emissions options such as Direct Air Capture indicates that they all run into their respective bottlenecks—BECCS with respect to land requirements, but on the upside producing bioenergy as a side product, while Direct Air Capture does not need much land, but is more energy-intensive. In order to provide for the negative emissions needed for achieving the 1.5°C target in a sustainable way, a portfolio of negative emissions options needs to minimize unwanted effects on non–climate policy goals.
Styles APA, Harvard, Vancouver, ISO, etc.
36

McElroy, Michael B. Energy and Climate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190490331.001.0001.

Texte intégral
Résumé :
The climate of our planet is changing at a rate unprecedented in recent human history. The energy absorbed from the sun exceeds what is returned to space. The planet as a whole is gaining energy. The heat content of the ocean is increasing; the surface and atmosphere are warming; mid-latitude glaciers are melting; sea level is rising. The Arctic Ocean is losing its ice cover. None of these assertions are based on theory but on hard scientific fact. Given the science-heavy nature of climate change, debates and discussions have not played as big a role in the public sphere as they should, and instead are relegated to often misinformed political discussions and inaccessible scientific conferences. Michael B. McElroy, an eminent Harvard scholar of environmental studies, combines both his research chops and pedagogical expertise to present a book that will appeal to the lay reader but still be grounded in scientific fact. In Energy and Climate: Vision for the Future, McElroy provides a broad and comprehensive introduction to the issue of energy and climate change intended to be accessible for the general reader. The book includes chapters on energy basics, a discussion of the contemporary energy systems of the US and China, and two chapters that engage the debate regarding climate change. The perspective is global but with a specific focus on the US and China recognizing the critical role these countries must play in addressing the challenge of global climate change. The book concludes with a discussion of initiatives now underway to at least reduce the rate of increase of greenhouse gas emissions, together with a vision for a low carbon energy future that could in principle minimize the long-term impact of energy systems on global climate.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Rojey, Alexandre. Energy and Climate. Wiley & Sons, Incorporated, John, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

North, Gerald R., et Kwang-Yul Kim. Energy Balance Climate Models. Wiley & Sons, Limited, John, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Marcotullio, Peter J., Josh Sperling et Andrea L. Pierce. Urban Energy and Climate. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/13194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Energy and Climate Change. Elsevier, 2018. http://dx.doi.org/10.1016/c2016-0-02166-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Energy and Climate Policy. OECD, 2012. http://dx.doi.org/10.1787/9789264174573-en.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

DOE, U. S. Energy and Climate Change. CRC, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Coley, David. Energy and Climate Change. Wiley & Sons, Incorporated, John, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Energy, Environment, and Climate. Norton & Company, Incorporated, W. W., 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Fuente-Sáiz, Daniel de la, et Martin Wild. Energy Balance Climate Models. Excelic Press LLC, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

North, Gerald R., et Kwang-Yul Kim. Energy Balance Climate Models. Wiley & Sons, Incorporated, John, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Leroux, Jean-Marc Lusson Erick. Energy, Climate and Tourism. Cambridge Scholars Publishing, 2019.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

North, Gerald R., et Kwang-Yul Kim. Energy Balance Climate Models. Wiley & Sons, Incorporated, John, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dovers, Stephen, Jamie Pittock et Karen Hussey. Climate, Energy and Water. Cambridge University Press, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Energy, Environment, and Climate. Norton & Company, Incorporated, W. W., 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie