Littérature scientifique sur le sujet « Energia, Fuel cell »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Energia, Fuel cell ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Energia, Fuel cell"

1

Basiura, Maciej, et Urszula Żyjewska. « Wykorzystanie wodoru w gospodarstwie domowym na przykładzie urządzeń, w których zastosowano technologię ogniw paliwowych ». Nafta-Gaz 78, no 6 (juin 2022) : 460–67. http://dx.doi.org/10.18668/ng.2022.06.06.

Texte intégral
Résumé :
W artykule przedstawiono tematykę zagospodarowania wodoru w kontekście polityk krajowych (np. Porozumienie sektorowe na rzecz rozwoju gospodarki wodorowej w Polsce) i unijnych (pakiet aktów prawnych „Fit for 55”). Jednym ze sposobów wykorzystania wodoru do produkcji energii elektrycznej lub cieplnej jest technologia ogniw paliwowych. Umożliwia ona wytwarzanie ww. energii bez emisji szkodliwych substancji, np. pyłów. W dalszej części artykułu przedstawiono stan ogniw paliwowych w Polsce. Omówiono, jakie projekty i działalności podejmują polskie jednostki na rzecz rozwoju technologii ogniw paliwowych w Polsce. Następnie scharakteryzowano rynek urządzeń dla użytkowników domowych. Obecnie rynek tego typu urządzeń dla gospodarstw domowych jest stosunkowo mały. W katalogach producentów znajdują się agregaty prądotwórcze oraz kogeneratory lub mikrokogeneratory. Krótko omówiono dostępne urządzenia: jakie ogniwa paliwowe wykorzystują, jakim rodzajem paliwa są zasilane, jakie są ich parametry eksploatacyjne (tj. moc cieplna, moc elektryczna, sprawność). W dalszej części artykułu przedstawiono sposoby wprowadzania produktów na rynek Unii Europejskiej. Jeśli ogniwa paliwowe i urządzenia je wykorzystujące mają być dopuszczone do obrotu w Unii Europejskiej, muszą spełniać wymagania odpowiednich rozporządzeń i dyrektyw. Wymieniono rozporządzenia i dyrektywy, którym mogą podlegać urządzenia wykorzystujące ogniwa paliwowe. Następnie przedstawiono zagadnienia związane z certyfikacją i badaniami potwierdzającymi właściwości deklarowane dla urządzeń z ogniwami paliwowymi w Laboratorium Badań Urządzeń Gazowych i Grzewczych Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego. Omówiono zagadnienia związane z zakupem generatora energii elektrycznej wykorzystującego stos ogniw paliwowych, a także konfigurację stanowiska pomiarowego przygotowanego na potrzeby prowadzenia badań realizowanych w ramach pracy statutowej. Podano, jakie instalacje oraz ich opomiarowanie są konieczne do prowadzenia badań. Po stronie zasilającej urządzenia z ogniwem paliwowym znajdują się: paliwo, utleniacz (np. powietrze), energia elektryczna potrzebna do rozruchu urządzenia, natomiast po stronie wyjścia: energia elektryczna i cieplna produkowana przez urządzenie, gazy wylotowe oraz woda.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Setz, L. F. G., S. R. H. Mello-Castanho et M. R. Morelli. « Cromito de lantânio : material para interconectores de células a combustível de óxido sólido - uma revisão ». Cerâmica 61, no 357 (mars 2015) : 60–70. http://dx.doi.org/10.1590/0366-69132015613571885.

Texte intégral
Résumé :
O cromito de lantânio (LaCrO3) é um material cerâmico sintético, que apresenta como principais características boa condutividade elétrica em altas temperaturas (> 800 °C), estabilidade química e física em atmosferas oxidantes e redutoras e, significativa atividade catalítica quando na forma de pós. Estas características o tornam atrativo para diversas aplicações de interesse tecnológico, como catalisadores, resistências para fornos de alta temperatura e geração de energia elétrica, sendo que nesse campo é potencialmente o material mais adequado para utilização como interconector em células a combustível de óxido sólido (Solid Oxide Fuel Cell - SOFC). As características intrínsecas, propriedades e técnicas de processamento do cromito de lantânio são consideradas neste trabalho por meio de uma revisão dos principais estudos relatados ao longo dos últimos 40 anos.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Perles, Carlos E. « Propriedades físico-químicas relacionadas ao desenvolvimento de membranas de Nafion® para aplicações em células a combustível do tipo PEMFC ». Polímeros 18, no 4 (2008) : 281–88. http://dx.doi.org/10.1590/s0104-14282008000400005.

Texte intégral
Résumé :
Embora não seja tecnologia recente, as células a combustível ou Fuel Cells (FC) continuam recebendo grande atenção, pois são consideradas como "fontes de energia do futuro" devido a características como alto rendimento energético e baixa emissão de poluentes, permitindo a extensão o tempo de vida das reservas fósseis e contribuindo para a melhoria da qualidade de vida. Atualmente, as pesquisas estão direcionadas, principalmente, ao desenvolvimento de FC para aplicações em sistemas móveis e portáteis. De todas as tecnologias existentes, a mais promissora para essa finalidade é a célula a combustível de eletrólito polimérico, conhecida como PEMFC (Polymer Electrolyte Fuel Cell) cuja pesquisa encontra-se focada, principalmente, no desenvolvimento de membranas poliméricas, com o objetivo de reduzir os custos de produção. Este trabalho será focado nos aspectos físico-químicos do desenvolvimento de membranas poliméricas. Serão discutidos aspectos estruturais do Nafion® relacionado-os as seguintes propriedades físico-químicas: fluxo eletrosmótico, permeabilidade gasosa, transporte de água através da membrana, estabilidade química e térmica. Toda a discussão será realizada para polímeros perfluorados, utilizando o Nafion® como modelo representante dessa classe de polímeros.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Branco, Ricardo Pereira, Taiana Denardi De Souza et Christiane Saraiva Ogrodowski. « Célula combustível microbial : Uma revisão narrativa sobre a geração de energia e produção de biopolímeros / Microbial Fuel cell : A narrative review about Power generation and production of biopolymers ». Brazilian Journal of Development 7, no 8 (3 août 2021) : 76195–211. http://dx.doi.org/10.34117/bjdv7n8-033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

A. C. Sequeira, César, David S. P. Cardoso, Marta Martins et Luís Amaral. « Novel materials for fuel cells operating on liquid fuels ». AIMS Energy 5, no 3 (2017) : 458–81. http://dx.doi.org/10.3934/energy.2017.3.458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ferrari, Tatiane Caroline, Rafael Menechini Neto, Mara Heloísa Olsen Scaliante et Luiz Mario De Matos Jorge. « MODELAGEM E SIMULAÇÃO DO ABATIMENTO DE CO A BAIXAS E MÉDIAS TEMPERATURAS PARA A APLICAÇÃO EM UMA CÉLULA A COMBUSTÍVEL AUTÔNOMA (MODELING AND SIMULATION TO REMOVAL OF CO BY LOW AND MEDIUM TEMPERATURES FOR APPLICATION IN AUTONOMOUS FUEL CELL) ». Engevista 17, no 2 (24 octobre 2014) : 187. http://dx.doi.org/10.22409/engevista.v17i2.658.

Texte intégral
Résumé :
A busca por fontes de energia que não sejam prejudiciais ao meio ambiente está se tornando cada dia mais urgente. Um exemplo são as células a combustível do tipo PEM (membrana eletrolítica polimérica), que utilizam hidrogênio como combustível. No entanto, na reforma de hidrocarbonetos para produzir um bom rendimento de hidrogênio ocorre à formação de CO que é um veneno para o catalisador da célula em concentrações acima de 50 mg L-1. Contudo, o CO pode ser removido por meio de um reator de leito fixo que promova a reação de water-gas shift (WGSR), convertendo o CO e água em H2 e CO2. Neste contexto, desenvolveu-se um modelo pseudo-homogêneo associado a equações cinéticas obtidas na literatura que pode reproduzir os resultados experimentais de um reator de leito fixo operando em baixas temperaturas para a WGSR. Com a cinética que forneceu o melhor ajuste, novas simulações foram feitas para a obtenção da temperatura e da razão CO/vapor d’água ótimas, que forneceram valores de 300°C e 0,25 respectivamente. No final, com as condições otimizadas mostrou-se o tempo de contato e o comprimento do leito necessário para diminuir a concentração de CO de 4000 para 50 mg L-1 que foram de 4 s e 1 m respectivamente.
Styles APA, Harvard, Vancouver, ISO, etc.
7

TÜRKER, Onur Can. « SOLAR ENERGY ASSISTS SEDIMENT MICROBIAL FUEL CELL TO GENERATE GREEN ENERGY FROM LIQUID ORGANIC WASTE ». Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering 23, no 2 (28 juin 2022) : 173–83. http://dx.doi.org/10.18038/estubtda.1031449.

Texte intégral
Résumé :
Simultaneous liquid organic waste disposal and electricity generation were achieved by a solar-assist sediment microbial fuel cell (S-SMFC) in terms of an ecological and economical perspective. In this respect, 840 mL house environment liquid organic waste which contains 10% juice and 10% sugary tea were disposed by electrogenic bacteria and converted electricity with solar energy. A 100 F capacitor was easily charged 29 times with generated electricity. S-SMFC was disposed 10 mL more waste than control due to more electrical bacteria density on the graphite electrode. In this case, Proteobacteria and Firmucutes were categorized dominate bacteria groups, and they were found in the S-SMFC as 54% and 28%, respectively. Importantly, solar energy increased population density of these groups in the S-SMFC and the density on the graphite electrode increased more than 19% according to control. Some bacteria which were associated with electricity production in the S-SMFC were to Azospirillum fermentarium, Clostridium sp., Pseudomonas guangdongensis, Bacteroides sp., Azovibrio restrictus, Clostridium pascui, Levilinea saccharolytica, Seleniivibrio woodruffii, Geovibrio ferrireducens. Consequently, S-SMFC presents innovative, crucial and simple methodology in order to convert liquid organic waste into the green energy.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Herlambang, Yusuf Dewantoro, Kurnianingsih Kurnianingsih, Anis Roihatin et Fatahul Arifin. « Unjukkerja Electrolyzer tipe Dry Cell Terhadap Variasi Konsentrasi Elektrolit dan Arus Listrik pada Mesin PEM Fuel Cell Skala Kecil untuk Pembangkit Listrik ». Jurnal Rekayasa Mesin 16, no 3 (30 décembre 2021) : 447. http://dx.doi.org/10.32497/jrm.v16i3.3077.

Texte intégral
Résumé :
<p>Seiring peningkatan kebutuhan listrik di Indonesia serta menipisnya jumlah energi fosil dilakukan pengembangan energi baru terbarukan yang bebas polusi salah satunya yakni pemanfaatan energi hidrogen. Mesin fuel cell merupakan aplikasi pengembangan energi hidrogen yang dapat mengubah energi kimia menjadi energi listrik. Proton Exchange Membrane (PEM) fuel cell merupakan salah satu jenis fuel cell yang mampu beroperasi pada temperatur rendah dan menghasilkan efisiensi sekitar 40-60%. Pada penelitian sebelumnya kinerja dari mesin PEM fuel cell kurang maksimal, sehingga perlu dilakukan modifikasi pada bagian komponen HHO generator yakni dengan mengubah dari tipe wet cell menjadi dry cell. Pengubahan ini didasari kelemahan tipe wet cell dimana hasil debit gas hidrogen rentan tercampur dengan uap air akibat kenaikan temperatur pada larutan elektrolit sehingga menyebabkan terjadinya penguapan. Hasil dari modifikasi ini yakni debit gas hidrogen yang mana setelah dilakukan modifikasi pada arus masukan 20 A dan konsentrasi KOH 0,5 M terjadi peningkatan debit sebesar 0,306 mL/s, kemudian pada 1 M terjadi peningkatan debit sebesar 1,434 mL/s, serta pada 1,5 M meningkat sebesar 5,439 mL/s. Namun demikian meski debit HHO generator, yang mana daya masukan fuel cell, meningkat efisiensi dari fuel cell justru menurun karena maksimum tegangan keluaran fuel cell sesuai spesifikasi hanya mencapai 2,3 V - 3 V, sehingga daya input masukan fuel cell tinggi namun daya keluaran fuel cell tetap sesuai dengan spesifikasi yang tentunya mengakibatkan nilai efisiensi fuel cell menurun. Secara keseluruhan hasil tertinggi efisiensi dari HHO generator mencapai 85,86% sedangkan efisiensi fuel cell mencapai 4,6%.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
9

Vera Natalia Ginting, Christin, Jumaida Sari Nasution, Malik Alfatah Sembiring et Murniaty Simorangkir. « The effect of composition and substrate fermentation duration on microbial fuel cell electrical energy ». Jurnal Pendidikan Kimia 11, no 3 (7 décembre 2019) : 116–21. http://dx.doi.org/10.24114/jpkim.v11i3.15773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ji, Hyunjin, et Joongmyeon Bae. « Start-up and operation of Gasoline Fuel Processor for Isolated Fuel Cell System ». Journal of Energy Engineering 25, no 1 (31 mars 2016) : 76–85. http://dx.doi.org/10.5855/energy.2015.25.1.076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Energia, Fuel cell"

1

Furlan, André Luís. « Análise técnica e econômica do uso do hidrogênio como meio armazenador de energia elétrica proveniente de fontes eólicas ». [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263953.

Texte intégral
Résumé :
Orientadores: Ennio Peres da Silva, Newton Pimenta Neves Junior
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-20T12:25:52Z (GMT). No. of bitstreams: 1 Furlan_AndreLuis_D.pdf: 2850462 bytes, checksum: cf9586ce36bd523119ff4727d43989f7 (MD5) Previous issue date: 2012
Resumo: Este trabalho faz uma análise técnico-econômica do uso do hidrogênio como meio armazenador de energia elétrica proveniente de fonte eólica, cuja natureza imprevisível do vento não pode garantir sua quantidade de energia elétrica ofertada. Para resolver este problema, foram propostos dois sistemas de armazenamento operando de modos diferentes, para os quais foi desenvolvido um modelo matemático para o dimensionamento deles, implementado numa planilha eletrônica, no qual foram consideradas as principais características e eficiências dos equipamentos que compõem os sistemas, bem como a garantia física característica da usina eólica. A seguir, foi realizada uma análise econômica dos sistemas tendo sido verificado que o custo de produção da energia elétrica a partir do primeiro modo de operação proposto foi aproximadamente 47,5% maior que o custo de produção de energia da usina eólica sem armazenamento (130 R$/MWh) e, considerando o segundo modo, a diferença foi 92% maior. No caso da energia elétrica gerada pela célula a combustível o valor obtido foi de 1.180,00 R$/MWh e 1.250,00 R$/MWh considerando, respectivamente, o primeiro e segundo modo de operação
Abstract: The current work aims to present a technical-economical analysis of the use of hydrogen as a means to store energy generated by wind power systems, since the wind regime is unpredictable and thus there is no guarantee for the amount of power offered. First of all, two storage systems were proposed and a mathematical model was established considering the main features and efficiencies of the equipment that compose the systems as well as the wind power energy guarantee. Secondly, an economic analysis of those systems was carried out. The cost of power generation for the first mode of operation was approximately 47,5% larger than that of a similar wind power system without storage (130 R$/MWh) and, concerning the second mode, the power cost was 92% larger. Regarding the energy generated by the fuel cell only, the power cost was respectively 1.180,00 R$/MWh and 1.250,00 R$/MWh for each of the operation modes
Doutorado
Engenharia Mecanica
Doutor em Planejamento de Sistemas Energéticos
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gonzatti, Frank. « Bases experimentais para o projeto, automação e instalação de sistemas de geração de energia com células de combustível ». Universidade Federal de Santa Maria, 2005. http://repositorio.ufsm.br/handle/1/8440.

Texte intégral
Résumé :
The main concern of this dissertation is the establishment of experimental bases for the project, automation, and installation of a micro-power plant for electric power generation based on PEM fuel cell stacks (BCS Technology). The plant operates automatically, and its control is accomplished by a microcontroller acting directly in the temperature, in the humidity of the membrane, in the amount of reaction air, in the monitoring of the individual voltage of each cell and in the attempt of recovery of a possibly problematic cell. For control operation special auxiliary mechanisms are necessary to avoid dangerous conditions to the stack. The making of the prototype is of low cost and easily found items in national market access have been intended. Special controlled atmospheres were also designed and built to shelter the stack and obtain safety operation when the stack is on. Therefore, the work tries to find the theoretical and experimental bases for a static power plant implementation based on fuel cell systems.
O tema principal desta dissertação é o estabelecimento de bases experimentais para o projeto, automação e a instalação de uma microcentral de geração de energia elétrica com pilhas de células de combustível do tipo PEM (BCS Technology). Esta central deve operar automaticamente, comandada por microcontrolador que atua diretamente na temperatura, na umidade da membrana, na quantidade de ar de reação, no monitoramento da tensão individual de cada célula e na tentativa da recuperação de células problemáticas. Para que este controle atue são necessários mecanismos auxiliares especiais de forma a não causarem danos às células. Na confecção do protótipo procurou-se especificar dispositivos de baixo custo e de fácil disponibilidade no mercado nacional. Locais especiais também foram projetados e construídos para abrigar a pilha quando em operação de forma a garantir o máximo de segurança. Portanto, este trabalho busca fornecer bases teóricas e experimentais para a implementação de uma central estacionária de geração com pilhas de células de combustível.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ramsdorf, Marcelo de Almeida [UNESP]. « Células-combustível a etanol direto embarcadas em aeronaves : estudo de utilização e recuperação de calor residual ». Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137847.

Texte intégral
Résumé :
Submitted by MARCELO RAMSDORF (marceloramsdorf@gmail.com) on 2016-04-07T18:09:06Z No. of bitstreams: 1 Dissertacao_Marcelo_Ramsdorf.pdf: 3773711 bytes, checksum: 2740d7feeceb5938048e38e5ea25595e (MD5)
Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-08T11:53:43Z (GMT) No. of bitstreams: 1 ramsdorf_ma_me_guara.pdf: 3773711 bytes, checksum: 2740d7feeceb5938048e38e5ea25595e (MD5)
Made available in DSpace on 2016-04-08T11:53:43Z (GMT). No. of bitstreams: 1 ramsdorf_ma_me_guara.pdf: 3773711 bytes, checksum: 2740d7feeceb5938048e38e5ea25595e (MD5) Previous issue date: 2016-02-26
Não recebi financiamento
O uso de células combustível de baixa temperatura embarcadas em aeronaves pode favorecer a geração de energia elétrica sem maiores impactos ambientais. Se, por um lado, o projeto de aeronaves atuais requer o uso de sistemas dedicados, por outro há uma maior demanda de energia elétrica a bordo. Isto significa que a pressurização da cabine, o sistema anti-gelo e a hidráulica da aeronave não devem depender da extração de ar do compressor das turbinas ou da potência de eixo. Entretanto, células combustível a hidrogênio apresentam dificuldades aos projetistas devido aos tanques de armazenamento, componentes em alta pressão e altas temperaturas para a reforma. Neste contexto, as células-combustível a etanol direto são uma tecnologia promissora. Publicações recentes mostram que, devido à baixa eficiência, células a etanol líquido em eletrólitos de membrana polimérica produzem calor residual. Conforme o Diagrama de Sankey obtido neste trabalho, 68% da energia total do combustível é convertida em calor, que deve ser gerenciado para evitar o ressecamento da membrana e o colapso do sistema. No presente trabalho um arranjo teórico de células a etanol direto é estudado. A metodologia leva em conta as demandas de energia de uma aeronave a jato de transporte regional em cada etapa do voo (táxi, decolagem, cruzeiro, descida e pouso). O trabalho apresenta uma contribuição inédita pela análise exergética do arranjo, que fornece um bom critério para a melhor escolha entre um sistema de cogeração ou recuperação de calor a bordo. Em um sistema otimizado, o calor residual pode ser utilizado no aquecimento de cabine ou aquecimento do combustível da aeronave. São apresentadas algumas estimativas de capacidade de aquecimento do combustível e da produção de água aquecida. A metodologia pode auxiliar o projetista a escolher entre duas configurações possíveis (com recuperação de calor no aquecimento de cabine ou puramente elétrico) dependendo da missão proposta para a aeronave.
The use of low temperature fuel cell stacks onboard aircrafts may provide a good way to generate electricity with less environment impact. Nowadays, the design of jet aircrafts requires embedded systems, which demand more electric power. This means that cabin air pressure, anti-icing and hydraulics should not depend on the engine bleed air or shaft power. However, hydrogen fuel cells pose difficulties for aircraft designers due to the storage tanks, high pressure systems and high temperatures for reforming. In this context, direct ethanol polimeric fuel cells are a promising technology. Recent publications show that the low efficiency of liquid ethanol in polymeric electrolyte produces waste heat. According to the Sankey Diagram obtained, 68% of the total input energy is heat that must be managed to avoid electrolyte drying and system collapse. In this article, a theoretical direct ethanol fuel cell stack is studied. The methodology takes into account the energy demands of a regional jet for each flight regime (start up, taxi, take off, cruise, descend and landing). It provides an unprecedented exergetic analysis that points out a good hint to choose between cogeneration or heat recovery onboard aircraft. The waste heat may be recovered for cabin and aircraft fuel heating in an optimized system. Some predictions for aircraft fuel heating capacity and water production are also presented. The methodology may help designers to decide which configuration is more appropriate (whether use heat recovery for cabin heating or a pure electric fuel cell stack) for the aircraft mission sought.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gonzatti, Frank. « Fundamentos para concepção, controle e automação de uma planta armazenadora de energia utilizando hidrogênio ». Universidade Federal de Santa Maria, 2017. http://repositorio.ufsm.br/handle/1/12933.

Texte intégral
Résumé :
Electrical generation with renewable sources is intermittent due to the characteristics of the primary energy (sun, wind, run of water, etc.). This feature can cause fluctuations and distortions on the voltage levels compromising power quality, stability and reliability when connected to an electrical system. The storage of energy acting together either as standalone unit or interconnected to the generating source of the public network can increase the penetration of these sources in the energy matrix. Among the different forms of energy storage, the one using hydrogen is quite promising because of its characteristics such as low environmental impact, high energy density, and energy high storage capacity. In this thesis, it is proposed some basis for designing, controlling and analyzing a hydrogen-based energy storage plant, consisting of a set of an alkaline type electrolyzer, hydrogen storage in the form of metallic hydrides and a fuel cell stack of the type PEM. The proposed plant was modeled and validated through experimental tests. The model allowed simulation of the main physicochemical quantities involved in the process of generation, storage and conversion of hydrogen into electricity storage. The fuel cell stack that is part of the energy storage was automated to avoid damages to the membrane, acting mainly on temperature control, elimination of contaminants on the anode side, and voltage reestablishment through the controlled application of short-circuits. The metal hydride cylinder storing hydrogen has been also automated with the main purpose of performing a thermal exchange in the best possible way between the metal alloy and the environment. Reuniting these devices to make them to act in synchrony, the plant was automated, controlled and monitored through a software developed in the LabView platform, making it more autonomous the whole plant. This program allows also acquisition and storage of the main physico-chemical quantities during the plant operation. These magnitudes collected in the tests along with the simulation results were analyzed and characterized the fundaments of this thesis.
A geração de energia elétrica a partir de fontes renováveis é intermitente devido às características da energia primária (sol, vento, fio d'água, etc.) e podem causar oscilações e distorções nos níveis de tensão comprometendo a qualidade da energia, a estabilidade e a confiabilidade quando conectadas ao sistema elétrico. O armazenamento de energia atuando junto a fonte geradora isolada ou interligada à rede pública pode aumentar a penetração dessas fontes, de baixo impacto ambiental, na matriz energética. Entre as diferentes formas de armazenamento de energia, o uso de hidrogênio é considerado bastante promissor devido ao baixo impacto ambiental, alta densidade de energia e alta capacidade de armazenamento. Nessa tese, propõe-se as bases para concepção, controle e análise de uma planta armazenadora de energia baseada em hidrogênio, constituída por um eletrolisador do tipo alcalino, armazenamento de hidrogênio na forma de hidretos metálicos e uma pilha de células a combustível do tipo PEM. A planta proposta foi modelada e validada através de testes experimentais. O modelo permite simular as principais grandezas físico-químicas envolvidas desde o processo de geração, armazenamento e conversão do hidrogênio armazenado em eletricidade. A pilha de células a combustível, que faz parte do armazenador de energia, foi automatizada para operar sem danos a membrana, atuando principalmente no controle da temperatura, na eliminação de contaminantes no lado do ânodo e no reestabelecimento da tensão através da aplicação controlada de curtos-circuitos na pilha. O cilindro de hidreto metálico que armazena o hidrogênio também foi automatizado com o intuito principal de realizar a troca térmica da melhor forma possível entre a liga metálica e o ambiente. Unindo esses dispositivos para atuarem em sincronia, a planta foi automatizada, controlada e monitorada através de um software desenvolvido na plataforma LabView, de tal forma a torná-la mais autônoma. Este programa também permite que sejam adquiridos e armazenados o comportamento das principais grandezas físico-químicas durante operação da planta. Essas grandezas levantadas em testes juntamente com resultados de simulações, foram analisadas e caraterizada os fundamentos desta tese.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lopes, Daniel Gabriel. « Analise tecnica e economica da inserção da tecnologia de produção de hidrogenio a partir da reforma de etanol para geração de energia eletrica com celulas a combustivel ». [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263838.

Texte intégral
Résumé :
Orientador: Ennio Peres da Silva
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-12T18:33:39Z (GMT). No. of bitstreams: 1 Lopes_DanielGabriel_D.pdf: 1342429 bytes, checksum: 07781c234da4ed70010b3d55a91f6986 (MD5) Previous issue date: 2009
Resumo: Este trabalho apresenta uma análise técnica e econômica da utilização do processo de reforma de etanol para produção de hidrogênio e da utilização deste hidrogênio para produção de energia elétrica em uma célula a combustível do tipo PEMFC de 5,0 kW. A análise técnica se fundamenta em dados experimentais, inéditos, obtidos do protótipo de um reformador de etanol desenvolvido a partir de uma parceria entre o Laboratório de Hidrogênio da UNICAMP e a empresa Hytron, levando-se em consideração as principais características do funcionamento real do que representa o estado da arte desta tecnologia no Brasil. A metodologia utilizada para realização da análise econômica foi desenvolvida para se determinar os valores de referência relativos ao custo do hidrogênio produzido (30,34 R$/kg) e da energia elétrica gerada (2,30 R$/kWh) e indicar metas para a inserção futura destas tecnologias. Os resultados obtidos permitiram que se concluísse que os atuais custos de geração do hidrogênio produzido pelo protótipo do reformador de etanol são economicamente competitivos, assim como o custo de geração da energia elétrica com utilização deste hidrogênio na célula a combustível quando comparado com a aplicação de outras tecnologias alternativas, mas não com os preços da eletricidade da rede de distribuição do Sistema Interligado brasileiro.
Abstract: This work presents a technical and economical analysis of the use of the technology of hydrogen production by the process of autothermal reforming of ethanol and the use of the hydrogen for the production of electric energy in a 5 kW PEMFC. The technical analysis is founded in unpublished experimental data obtained from the prototype of a ethanol reformer developed by the Hydrogen Laboratory at UNICAMP and by Hytron, taking into account the main characteristics of its real functioning which represents the state of the art of this technology developed in Brazil. The methodology applied for the economical analysis was developed in order to determine the reference values concerning the cost (30,34 R$/kg) of the hydrogen produced and the electric energy generated (2,30 R$/kWh), and to indicate the milestones for the future introduction of these technologies. The results led to the conclusion that the present costs of hydrogen production by the prototype of the ethanol reformer are lower than the present prices practiced in the market, and that the cost of the electric energy generation with the hydrogen in a PEMFC is lower than those obtained by the use of other alternative technologies, except when compared to grid-connected power system in Brazil.
Doutorado
Doutor em Planejamento de Sistemas Energéticos
Styles APA, Harvard, Vancouver, ISO, etc.
6

Aguiar, Cassius Rossi de. « Contribuição ao gerenciamento e controle de células a combustível e armazenadores de energia para a operação em geração distribuída ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-09112017-103011/.

Texte intégral
Résumé :
A presente tese busca desenvolver uma metodologia para o gerenciamento e controle de uma geração distribuída que utiliza como fonte principal células a combustível do tipo PEM (Proton Exchange Membrane). A finalidade do trabalho consiste em analisar, controlar e gerenciar a operação da célula a combustível (CaC) nas operações ilhada e conectada em relação à rede de distribuição. Nos primeiros capítulos do texto é elaborada uma revisão acerca do princípio de funcionamento e do modelo da CaC. Após este estágio inicial, são analisadas e modeladas as estruturas dos estágios CC e CA que compõem a geração distribuída. Para o modo conectado é desenvolvida uma estratégia para o controle da tensão do link CC que, a partir da regulação da corrente do estágio CA, permite o gerenciamento da potência fornecida pela CaC. Sequencialmente ao texto e com a adição do estágio de armazenamento de energia, é apresentada uma proposta que vincula a dinâmica da CaC com a estrutura de gerenciamento do estágio CC e CA. Esse fato garante que a alteração do ponto de operação da CaC seja descrito conforme uma dinâmica predeterminada, garantindo assim que transitórios não sejam absorvidos pela CaC. Como parte final da tese, é desenvolvida uma estratégia para a inicialização da CaC, a qual associa o próprio comportamento da célula e o estágio de armazenamento de energia. Os resultados apresentados ao longo do texto mostram que as estruturas propostas tornam a CaC menos sensível a transitórios de carga, além de serem capazes de deslocar (gerenciar) o ponto de operação da célula. Ao final de cada capítulo, são apresentados resultados experimentais e de simulações que auxiliam o entendimento e suportam as propostas do trabalho.
This thesis proposes a methodology for management and control of distributed generation with a Proton Exchange Membrane Fuel Cell (PEMFC) as the main source. Additionally, the analysis of performance is used when the PEM fuel cell operates in two different operation modes, i.e. in grid-connected and stand-alone modes. In the first chapters, a review of main features and a mathematical model of fuel cells are presented. Sequentially, the theoretical models of the DC- and AC-power converters are analyzed. For grid-connected operation mode, a strategy based on the DC-link voltage control is proposed via current regulation of the AC stage affording thus the management of the power produced by the fuel cell. Additionally, with the use of the storage devices, a proposal that associates the dynamics of the PEM fuel cell with the DC and AC stages is shown. This fact ensures that the movement of the fuel cell operating point is described within a predetermined dynamic, ensuring that transients are not absorbed by the fuel cell. Finally, a strategy for the startup of fuel cell in association with the energy storage stage is developed. The results show that the proposed structures makes the cell less sensitive to the load transient, in order to move (manage) the fuel cell operating point. At the end of each chapter, experimental and simulation results are presented to support the proposed approach.
Styles APA, Harvard, Vancouver, ISO, etc.
7

CAVALCANTI, Davi de Lima. « Potencial biotecnológico de chlorella vulgaris : aplicação em biocelulas a combustível fotossintética, produção de energia e sequestro de co2 ». Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18531.

Texte intégral
Résumé :
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2017-04-10T17:20:12Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO -DAVI CAVALCANTI certa.pdf: 1682949 bytes, checksum: e88ff7ec323c0df6eb4f0102509ba5b3 (MD5)
Made available in DSpace on 2017-04-10T17:20:12Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO -DAVI CAVALCANTI certa.pdf: 1682949 bytes, checksum: e88ff7ec323c0df6eb4f0102509ba5b3 (MD5) Previous issue date: 2016-02-23
Capes
O crescimento da população mundial vem causando um aumento substancial na demanda por energia o que poderá causar em curto prazo uma crise energética, pois grande parte da energia consumida em todo mundo é proveniente de fontes não renováveis como o petróleo, já que sua prospecção e utilização tem causado grandes danos a natureza, impactando vários ecossistemas e colaborando com o aquecimento global. Por estes motivos, novas tecnologias para geração de energia limpa vêm sendo criadas. Um exemplo destas são as células a combustível, que são dispositivos que convertem energia química em elétrica. Porém esta tecnologia apresenta algumas limitações, como deficiências na transferência de elétrons, baixa geração de potência e altos custos associados a utilização de catalizadores metálicos, os quais aumentam os custos de implantação e dificultam sua utilização em larga escala. Visando superar estas limitações uma variação desta tecnologia foi desenvolvida, a chamada célula a combustível fotossintética. Neste tipo de célula a combustível, microalgas como a Chlorella vulgaris são utilizadas no compartimento catódico substituindo catalizadores químicos melhorando sua sustentabilidade e reduzindo os custos de implantação. As utilizações de cátodos de microalgas também colaboram com o sequestro de carbono da atmosfera, o convertendo em oxigênio e biomassa rica em metabolitos de grande valor comercial como amido e lipídios. No presente estudo a microalga C. vulgaris foi utilizada no compartimento catódico de uma célula a combustível fotossintética a fim de se analisar sua eficiência na produção de energia, sua capacidade de sequestrar o dióxido de carbono da atmosfera e seu acúmulo de materiais de reserva como amido e lipídios totais. Na primeira parte deste estudo a microalga C. vulgaris foi utilizada como aceptora de elétrons em um compartimento catódico, onde durante 10 dias de experimento foram avaliados a quantidade de CO2 capturada pelas células de algas (7mg/L de CO2), a composição da biomassa, Amido (3%) e Lipídios (70%) e parâmetros eletroquímicos como a Eficiência Coulômbica (CE = 33,1%) e densidade de corrente máxima (Idmax = 147 mA cm²). Em seguida esta condição foi submetida a um planejamento fatorial completo 2², onde as variáveis independentes, tempo de iluminação e a concentração de nitrogênio foram testadas sobre a produção de eletricidade e acúmulo de amido e lipídios. Durante os experimentos foi constatado que a iluminação é o fator que mais influi na geração de energia, onde foram obtidos valores de densidade de corrente máxima Idmax = 178 mA/cm² com uma eficiência coulômbica de 42,5%, além de uma acumulação máxima de amido de 38% e 77% de lipídios, demonstrando que a utilização de um cátodo fotossintético para produção de energia é viável e eficiente na produção de metabólitos com elevado valor comercial.
The global population growth has caused a substantial increase in demand for energy, which in short-term may cause an energy crisis, since much of the energy consumed throughout the world comes from non-renewable sources like oil. Besides its exploration and use cause great damage to the environment, affecting diverse ecosystems and contributing to global warming. For those reasons, are being created new technologies for clean energy generation. An example of these technologies is Fuel Cells, which are devices that convert chemical energy into electric. However, this technology has some limitations, such as defects in electron transfer, low power output and high costs associated with the use of metal catalysts, which increase deployment costs and hamper its use on a large scale. Aiming to overcome these limitations, a variation of this technology was developed, the so-called photosynthetic fuel cell. In this type of fuel cell, microalgae such as Chlorella vulgaris are used in the cathode compartment replacing chemical catalysts improving their sustainability and reducing deployment costs. The uses of microalgae cathodes also collaborate with carbon capture from the atmosphere, turning it into oxygen and biomass rich in metabolites of great commercial value as starch and lipids. In the current study the microalgae C. vulgaris was used in the cathode compartment of a photosynthetic fuel cell in order to analyze its energy production efficiency, their ability to sequester atmospheric carbon dioxide and its accumulation of reserve materials such as starch and total lipids. The first part of this study microalga C. vulgaris was utilized as an electron acceptor in a cathode compartment, which were analyzed during 10 days of experiment the amount of CO2 captured by the algae cells (7mg/L-1 of CO2), the composition of the biomass starch (3%) and lipids (70%) and electrochemical parameter as coulombic efficiency (CE = 33.1%) and the maximum current density (mA Idmax = 147 cm²). Then this condition was subjected to a complete factorial design 2² where the independent variables, illumination time and the concentration of nitrogen were tested on the production of electricity and accumulation of starch and lipids. During the experiments it was evidenced that enlightenment is the factor that most affects the power generation, which were obtained maximum current density values Idmax = 178 mA/cm² with a coulombic efficiency of 42.5%, and a maximum accumulation of 38% of starch and 77% of lipid, demonstrating that the use of a photosynthetic cathode for energy generation is feasible, and also in the production of metabolites with a high commercial value.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Micena, Raul Pereira. « Estação de produção e abastecimento de hidrogênio solar : análise técnica e econômica / ». Guaratinguetá, 2020. http://hdl.handle.net/11449/192426.

Texte intégral
Résumé :
Orientador: José Luz Silveira
Resumo: A utilização do hidrogênio como insumo energético para aplicações de transporte depende da disponibilização de alternativas renováveis para sua produção. Uma delas são as estações com eletrólise alimentada por uma planta solar fotovoltaica on-grid. Nesse trabalho, assume-se a substituição da atual frota de táxis da cidade brasileira Guaratinguetá-SP por veículos a célula-a-combustível. Para atender a demanda de hidrogênio dos veículos, é preciso produzir 170,24 kg de hidrogênio por dia. Esse hidrogênio deve ser fornecido comprimido a uma pressão de 87,5 MPa e a uma temperatura de -40°C, de acordo com norma vigente. Assim, propõe-se uma análise energética com o cálculo da energia necessária para produzir o gás por meio de uma planta fotovoltaica on-grid, bem como as perdas envolvidas. Também são calculadas energias e perdas relacionadas com a compressão e refrigeração do hidrogênio, bem como o volume dos tanques. Os resultados indicam uma necessidade de geração de 10.037 kWh por dia para atender todos os processos envolvidos na estação de abastecimento. Desse total, 56,53 % é entregue na forma de hidrogênio. Se for considerada a energia solar que incide diretamente sobre os painéis, esse percentual é de 9,33 %. A maior parte das perdas se concentra na conversão da irradiação solar em energia elétrica e na eletrólise da água, sendo estas as duas principais oportunidades para melhorias de eficiência. O custo do hidrogênio foi calculado em 16,197 US$/kg se produzido com energia s... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The use of hydrogen as an energy carrier for transport applications depends on the availability of renewable alternatives for its production. One of them is the electrolysis stations powered by a grid connected photovoltaic solar plant. In this work, it is assumed that the current taxi fleet in the Brazilian city of Guaratinguetá will be replaced by fuel cell vehicles. To meet the hydrogen demand of vehicles, it is necessary to produce 170.24 kg per day. This hydrogen must be supplied compressed at a pressure of 87.5 MPa and at a temperature of -40 °C, in accordance with current regulations. Thus, an energy analysis is proposed with the calculation of the energy required to produce the gas through a photovoltaic plant connected to the grid, as well as the losses involved. Energies and losses related to hydrogen compression and cooling are also calculated, as well as the volume of the tanks. The results indicate a need to generate 10,037 kWh per day to meet all the processes involved in the supply station. Of this total, 56.53 % is delivered in the form of hydrogen. If the incoming solar in the photovoltaic panels is considered, this percentage is 9.33 %. Most of the losses are concentrated in the conversion of solar irradiation into electrical energy and in the electrolysis of water, these being the two main opportunities for efficiency improvements. The cost of hydrogen was calculated at 16,197 US$/kg if produced with photovoltaic solar energy and at 20,812 US$/kg if produce... (Complete abstract click electronic access below)
Mestre
Styles APA, Harvard, Vancouver, ISO, etc.
9

Carnieletto, Renata. « Aproveitamento de energia vertida turbinável para produção de hudrogênio e geração distribuída ». Universidade Federal de Santa Maria, 2011. http://repositorio.ufsm.br/handle/1/8486.

Texte intégral
Résumé :
Conselho Nacional de Desenvolvimento Científico e Tecnológico
In many hydroelectric power plants, while the water inflows are greater than demand, part of this water that could be used to generate energy is spilled by the dam gates and literally wasted. This dissertation discusses the use of this wasted hydroelectric potential for hydrogen (H2) generation through water electrolysis. The usage of this hydrogen can happen not only in vehicle engines or industrial applications, but in energy generation through fuel cells and behaving as an energy vector. The H2 production by electrolysis requires an energy source for its processing. This dissertation aims at to mitigate this issue by the use of the secondary energy. Besides the H2 generation aspects, it is presented the complete mathematic model of alkaline electrolyzers. With respect to the wasted hydroelectric potential approach it must be taken into account that alternative sources of energy are settled onto three bases: the energy source itself, the distribution grid and the interconnection energy source-to-grid (or source-to-load). Looking at this fact, the source connection and disconnection from the grid is a challenge for systems engineering. For this dissertation the simulation of Voltage Source Inverters (VSI) was selected to represent the islanded and grid tied conditions. For that, it is proposed an anti-islanding algorithm used to protect the system against faults that may occur in the grid. A reconnection algorithm is also included to obtain the synchronism of the alternative source with the electric grid. To control these inverters, two control techniques are presented along this text: DQ-frame and the proportional and resonant (P+Resonant) control. These control techniques are simulated to evaluate the application efficiency of such controllers. Additionally a smart control in perspectives of the smart grid was also developed and it is proposed in this dissertation. A smart grid integrated to the distribution system allows aggregation of efficient actions of all agents related to electricity services and so strategically making available the electricity goods and services. In this context, based on real-time spot pricing of the electricity obtained from the utility using an advanced metering device, the inverter control algorithm determines the optimal operating mode. This algorithm enables the inverter to: a) schedule local loads; b) determine either to local storage or selling of energy to the grid. Finally, it is shown that on-line fault detection in the system can also make possible a fast restoration of most contingence situations.
Em muitas Usinas Hidrelétricas, quando as afluências de água são maiores que a demanda, uma parcela desta água que ainda poderia ser utilizada para gerar energia é desviada para o vertedouro e literalmente desperdiçada. Esta energia recebe a denominação de Energia Vertida Turbinável (EVT). Essa dissertação discute o aproveitamento da EVT para produção de hidrogênio através da eletrólise da água. O uso desse hidrogênio pode ocorrer não apenas em motores de veículos ou aplicações industriais, mas na própria geração de energia elétrica em células a combustível, agindo como vetor energético. A produção de H2 por eletrólise da água convencionalmente necessita de uma fonte de energia para o processo. Essa dissertação sugere a mitigação deste problema pela utilização de energia secundária. Além de aspectos para produção de H2, é apresentada uma modelagem matemática completa de todo este processo envolvendo os eletrolisadores alcalinos. Na abordagem da EVT há que se levar em conta que as fontes alternativas em geral estão assentadas em três fundamentos: a fonte de energia, a rede de distribuição e a interconexão fonte de energia-rede (ou fonte-carga). Com vistas a este fato, a desconexão e re-conexão entre a fonte e a rede pode ser um problema desafiador para a engenharia de sistemas. Para esta dissertação, selecionou-se a simulação dos Inversores VSI (Voltage Source Inverters) como resposta para as condições de ilhamento e conexão à rede elétrica. Para isto, propõe-se um algoritmo anti-ilhamento que visa a proteção contra as faltas que possam ocorrer na rede e um algoritmo de re-conexão à rede, incluindo o meio de sincronismo da fonte alternativa com a rede. Para controlar tais inversores, duas técnicas são apresentadas ao longo deste texto: utilizando as transformações DQ e controle proporcional e ressonante (P+Resonant). Essas duas técnicas de controle são simuladas para se avaliar a eficiência da aplicação de tais controladores. Em adicional, foi desenvolvido um controle inteligente diferenciado com perspectivas ao Smart Grid. O Smart Grid integrado aos sistemas de distribuição permite agregar de forma eficiente as ações de todos os agentes ligados a ele para que, de forma estratégica, sejam disponibilizados bens e serviços de eletricidade. Neste contexto, o controle inteligente proposto para inversores de conexão com rede a utiliza técnicas de gerenciamento pelo lado da demanda e ainda determina automaticamente o ponto ótimo de operação do inversor, possibilitando assim o planejamento e arranjo de cargas locais e a determinação de quando deve ser armazenada energia ou vendida para a rede. Mostra-se finalmente que a detecção das falhas no sistema também poderá ser praticada de forma a se poder atuar rapidamente no restabelecimento das situações de contingência.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Testi, Luca. « Tecnologie per la produzione di idrogeno da fonti rinnovabili ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24892/.

Texte intégral
Résumé :
Il seguente elaborato analizza il ciclo di vita dell'idrogeno, a partire dal processo produttivo fino alle sue possibili applicazioni. In particolare si sofferma sulla produzione di idrogeno tramite elettrolisi e sulla sua applicazione all'interno di fuel cells nell'ambito dei trasporti, per ottenere ed utilizzare energia totalmente ad emissioni zero.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Energia, Fuel cell"

1

Fuel cell efficiency. Hauppauge, N.Y : Nova Science Publishers, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy. Hydrogen, Fuel Cells & Infrastructure Technologies Program. Fuel cells : Power for the 21st century. Washington, D.C : The Office, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Koval, Julie. Developments in fuel cell technology. Lansing, Mich : Senate Fiscal Agency, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Z, Ding, et United States. National Aeronautics and Space Administration., dir. Modeling of thermal performance of multiphase nuclear fuel cell under variable gravity conditions. [Washington, DC] : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Z, Ding, et United States. National Aeronautics and Space Administration., dir. Modeling of thermal performance of multiphase nuclear fuel cell under variable gravity conditions. [Washington, DC] : National Aeronautics and Space Administration, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

commission, European. European hydrogen and fuel cell projects. Luxembourg : Office for Official Publications of the European Communities, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

PEM fuel cell diagnostic tools. Boca Raton, FL : Taylor & Francis/CRC Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Logan, Bruce E. Microbial Fuel Cells. New York : John Wiley & Sons, Ltd., 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Development, United States Congress Senate Committee on Energy and Natural Resources Subcommittee on Energy Research and. Fuel cell research, development, and commercialization : Hearing before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-ninth Congress, second session, on S. 1686 ... S. 1687 ... February 24, 1986. Washington : U.S. G.P.O., 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

United States. Congress. Senate. Committee on Energy and Natural Resources. Subcommittee on Energy Research and Development. Fuel cell research, development, and commercialization : Hearing before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-ninth Congress, second session, on S. 1686 ... S. 1687 ... February 24, 1986. Washington : U.S. G.P.O., 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Energia, Fuel cell"

1

Li, Xianguo. « Fuel Cells ». Dans Energy Conversion, 1033–83. Second edition. | Boca Raton : CRC Press, 2017. | Series : : CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Barbir, F. « Fuel Cell Vehicle ». Dans Hydrogen Energy System, 241–51. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0111-0_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yildiz, A., et K. Pekmez. « Fuel Cells ». Dans Hydrogen Energy System, 195–202. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0111-0_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Alonso-Vante, Nicolas. « Fuel Cell Electrocatalysis ». Dans Chalcogenide Materials for Energy Conversion, 27–60. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89612-0_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Holdway, Aaron, et Oliver Inderwildi. « Fuel Cell Technology ». Dans Energy, Transport, & ; the Environment, 273–83. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2717-8_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guerrero-Lemus, Ricardo, et José Manuel Martínez-Duart. « Fuel Cells ». Dans Lecture Notes in Energy, 289–306. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4385-7_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Garcia-Gabin, Winston, et Darine Zambrano. « Fuel Cell Control ». Dans Alternative Energy and Shale Gas Encyclopedia, 499–508. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066354.ch49.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Capareda, Sergio C. « Fuel Cells ». Dans Introduction to Renewable Energy Conversions, 211–38. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. : CRC Press, 2019. http://dx.doi.org/10.1201/9780429199103-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Goel, Sanket. « Microfluidic Microbial Fuel Cell : On-chip Automated and Robust Method to Generate Energy ». Dans Microbial Fuel Cell, 229–47. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66793-5_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chandra, Rashmi, S. Venkata Mohan, Parra-Saldivar Roberto, Bruce E. Ritmann et Raul Alexis Sanchez Cornejo. « Biophotovoltaics : Conversion of Light Energy to Bioelectricity Through Photosynthetic Microbial Fuel Cell Technology ». Dans Microbial Fuel Cell, 373–87. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66793-5_19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Energia, Fuel cell"

1

Rossetti, Ilenia, Cesare Biffi, Lucio Forni, Gian Franco Tantardini, Giuseppe Faita, Mario Raimondi, Edoardo Vitto et Davide Alberti. « Integrated 5 kWe + 5 kWt PEM-FC Generator From Bioethanol : A Demonstrative Project ». Dans ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33049.

Texte intégral
Résumé :
A power unit constituted by a reformer, a H2 purification section and a fuel cell is being installed c/o the Dept. of Physical Chemistry and Electrochemistry of Universita` degli Studi di Milano, on the basis of a collaboration with Helbio S.A. (Hydrogen and Energy Production Systems, supplier) and the support of some sponsors (Linea Energia S.p.A., Parco Tecnologico Padano and Provincia di Lodi). The system is suitable to obtain 5 kWelectric (a.c.) + 5 kWthermal (hot water at 70°C) as peak output. H2 is produced by steam reforming (SR) of second generation bioethanol, obtainable by different non-food competitive biomass. The assessment of the effect of biomass nature and of the consequent different impurities left in the produced bioethanol is part of the experimentation, together with the evaluation of the impact of bioethanol production cost on the final energy cost. Furthermore, the effect of different ethanol/steam ratios will be taken into account to lighten as much as possible the energy demanding ethanol dehydration process. The former point focuses on catalyst life, imposing careful ethanol characterisation and proper catalyst formulation, whereas the latter is connected with the overall energetic efficiency and economic sustainability. Indeed, the reforming process requires co-feeding of water, opening the way to the research of different, cheaper, ethanol purification strategies, leading to lower ethanol concentration with respect to the azeotrope. The reformate is purified from CO down to a concentration below 20 ppm, suitable to feed the proton exchange membrane fuel cells (PEMFC) stack integrated in the fuel processor. This result is achieved by feeding it to two water gas shift reactors, connected in series and operating at high and low temperature, respectively. The expected CO concentration in the outcoming gas is ca. 1 vol% and the final CO removal to meet the specifications is accomplished by selective methanation. The purified H2 is fed to a 5 kWe PEMFC stack, which should have an expected overall efficiency around 80% (including thermal output). The main goal of the present project is to check system performance under widely different operating conditions and load, to verify the effectiveness of the proposed technology and to suggest adequate improvements. Different operating conditions are under evaluation as for ethanol origin, purity, concentration, temperature and space velocity of every reaction step, so to obtain the best compromise between H2 yield, power output and operating costs.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Almeida, Renata A., et Maria de Lourdes Moreira. « An Overview of Brazilian Nuclear Program ». Dans ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6416.

Texte intégral
Résumé :
Human dependence on electricity has increased greatly over the years and, as a result, access to energy resources has become a priority in most countries, both developed and developing. With this expansion comes the need for government involvement in the planning and expansion of energy resources, especially when it comes to nuclear energy. This study presents a review of Brazil’s nuclear power program with the Angra 1 and Angra 2 power plants and the construction of the Angra 3 plant. It examines the Plano Nacional de Energia (National Energy Plan – NEP-2030) which aims, among other objectives, to implement a revised nuclear energy program, including the construction of new power plants in locations yet to be determined throughout the country.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rossetti, Ilenia, Cesare Biffi, Lucio Forni, Gian Franco Tantardini, Giuseppe Faita, Mario Raimondi, Edoardo Vitto et Andrea Salogni. « 5 KWe + 5 KWt PEM-FC Generator From Bioethanol : Fuel Processor and Development of New Reforming Catalysts ». Dans ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54900.

Texte intégral
Résumé :
A power unit constituted by a reformer, a H2 purification section and a fuel cell is being tested c/o the Dept. of Physical Chemistry and Electrochemistry of Universita` degli Studi di Milano, on the basis of a collaboration with Helbio S.A. Hydrogen and Energy Production Systems (supplier of the unit) and some sponsors (Linea Energia S.p.A., Parco Tecnologico Padano and Provincia di Lodi). The system size allows to cogenerate 5 kWe (a.c.) + 5 kWt (hot water at 65°C) as peak output. Bioethanol, obtainable by different non-food competitive biomass is transformed into syngas by a prereforming and a reforming stage and the reformate is purified from CO to a concentration below 20 ppmv, suitable to feed the proton exchange membrane fuel cells (PEMFC) stack integrated in the fuel processor. This result is achieved by feeding the reformate to two water gas shift reactors, connected in series and operating at high and low temperature, respectively. CO concentration in the outcoming gas is ca. 0.7 vol% and the final CO removal to meet the specifications is accomplished by two methanation stages in series. The second methanation step acts as a guard since ca. 15 ppmv of CO are obtained even after the first reactor. The purified H2 is suitable for feeding a 5 kWe PEMFC stack, which should have an expected overall efficiency higher than 80% (including thermal output). The main goal of the present project is to check system performance under different operating conditions, to verify the effectiveness of the proposed technology and to suggest adequate improvements. In particular, the system will be tested under different load, to check for the readyness of response. Another point will be the effect of bioethanol origin, purity and concentration, so to open the way to separation processes different from distillation. Due to the demonstrative character of the project the main part of the experimentation focuses on the accumulation of a suitable amount of hours-on-stream to validate the system feasibility. A parallel investigation is active on the development of alternative nanostructured catalysts for the present application. In particular, Ni, Co and Cu-based catalysts, supported over La2O3, TiO2 and SiO2 were tested at 500, 625 and 750°C. At the moment no perfect candidate has been found to operate the steam reforming at the lowest temperature, due to unsatisfactory material balances and by-products formation at 500°C with most catalysts. Good H2 productivity, with 100% C balance has been achieved at higher temperature (≥ 625°C).
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mohan, Sujith, et S. O. Bade Shrestha. « Evaluation of the Performance Characteristics of a Direct Methanol Fuel Cell With Multi Fuels ». Dans ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85161.

Texte intégral
Résumé :
Direct methanol fuel cells are one of the alternate power sources for the field of power electronics because of their high energy density. The benefits of a fuel cell towards the environment can be greatly improved if the fuel used for its application comes from renewable sources. In this study, the performance of a direct methanol fuel cell was investigated under five different methanol concentrations. The effect of methanol concentration on the cell operating temperature is studied. Impedance spectroscopy was conducted to measure the ohmic, activation and mass transport losses for all concentrations. The cell performance was evaluated using methane and ethanol fuels and this was compared with methanol operation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Desideri, Umberto. « Perspectives on the Use of Molten Carbonate Fuel Cells with Renewable Energy Sources ». Dans ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1702.

Texte intégral
Résumé :
This paper presents the state of the art and the perspectives of the use of molten carbonate fuel cells with renewable energy sources. The molten carbonate fuel cell is the only technology that can use fuels containing carbon monoxide and carbon dioxide in the anode gas. It has been even shown in experimental tests in single cells that carbon monoxide can be considered as a fuel in this type of fuel cell. The fuels that can be used in MCFC are landfill gas, biogas from anaerobic digestion processes and syngas from gasification of biomass and waste. The commercial size of MCFC stacks (125 to 250 kW) is the right size for use with such fuels which are generally not available for power plants with output larger than some MW. All the above fuels are characterized by the presence of contaminants that need be removed before their use in the fuel cell. Among the contaminants hydrogen sulfide and chlorine compounds seem to cause the worst damage. To be used with such fuels, MCFC still need to be deeply investigated and duration tests are needed to determine the highest tolerable concentrations in the anode gases.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Brushett, Fikile R., Adam S. Hollinger, Larry J. Markoski et Paul J. A. Kenis. « Microfluidic Fuel Cells as Microscale Power Sources and Analytical Platforms ». Dans ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18007.

Texte intégral
Résumé :
A continuously growing need for high energy density miniaturized power sources for portable electronic applications has spurred the development of a variety of microscale fuel cells. For portable applications, membrane-based fuel cells using small organic fuels (i.e., methanol, formic acid) are among the most promising configurations as they benefit from the high energy density and easy storage of the liquid fuels. Unfortunately, the performance of these fuel cells is often hindered by membrane-related issues such as water management (i.e., electrode dry-out / flooding) and fuel crossover. Furthermore, high costs of, for example, catalysts and membranes as well as durability concerns still hinder commercialization efforts. To address these challenges we have developed membraneless laminar flow-based fuel cells (LFFCs), which exploit microscale transport phenomena (laminar flow) to compartmentalize streams within a single microchannel. The properties of various fuel and media flexible LFFCs will be presented and novel strategies for improving fuel utilization and power density will be discussed. Furthermore, the performance of a scaled-out 14-channel LFFC prototype is presented. We have also developed a microfluidic fuel cell as a powerful analytical platform to investigate and optimize the complex processes that govern the performance of catalysts and electrodes in an operating fuel cell. This platform bridges the gap between a conventional 3-electrode electrochemical cell and a fuel cell, as it allows for standard electrochemical analysis (e.g., CV, CA, EIS) as well as fuel cell analysis (e.g., IV curves).
Styles APA, Harvard, Vancouver, ISO, etc.
7

Srinivasan, Supramanian, Lakshmi Krishnan, Andrew B. Bocarsly, Kan-Lin Hsueh, Chiou-Chu Lai et Alex Peng. « Fuel Cells vs. Competing Technologies ». Dans ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1723.

Texte intégral
Résumé :
Investments of over $1 B have been made for Fuel Cell R&D over the past five decades, for space and terrestrial applications; the latter includes military, residential power and heating, transportation and remote and portable power. The types of fuel cells investigated for these applications are PEMFCs (proton exchange membrane fuel cells), AFCs (alkaline fuel cells), DMFCs (direct methanol fuel cells), PAFCs (phosphoric acid fuel cells), MCFCs (molten carbon fuel cells), SOFCs (solid oxide fuel cells). Cell structure, operating principles, and characteristics of each type of fuel cell is briefly compared. The performances of fuel cells vs. competing technologies are analyzed. The key issues are which of these energy conversion systems are technologically advanced and economically favorable and can meet the lifetime, reliability and safety requirements. This paper reviews fuel cells vs. competing technologies in each application category from a scientific and engineering point of view.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Samanta, I., R. K. Shah et A. Wagner. « Fuel Processing for Fuel Cell Applications ». Dans ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2515.

Texte intégral
Résumé :
At its essence, a fuel cell combines hydrogen and oxygen to form electricity, heat, and water. The source of this hydrogen may be from natural gas, coal, gasoline, diesel, alcohols, or natural decomposition products. Pure hydrogen is the ideal fuel, but it needs to be obtained by processing fossil fuels (natural gas, gasoline, diesel, oil, coal, etc.), biofuels (e.g., landfill gas, anaerobic digester gas, etc.), or chemical intermediates, or must be produced via renewable energy sources through electrolysis of water. Currently pure hydrogen is produced cryogenically at both a great energy and fiscal expense. In this paper, we cover all important fuel reforming processes for generating hydrogen for fuel cells and then discuss the associated reformers. The common techniques utilized for external fuel reforming processes are steam reforming, partial oxidation and autothermal reforming. For high temperature fuel cells, direct and indirect internal reforming techniques are used and will be discussed. The methods for reforming of chemical intermediates (alcohol and ammonia), reforming of bio-fuels and aviation fuels are also discussed in this paper. For low temperature fuel cells such as PEM, carbon monoxide is a poison that adversely affects fuel cell performance. The CO content must be reduced to below 100 ppm. This is accomplished by use of the water-gas shift reaction, preferential oxidation, methanation, or may be accomplished by membrane separation techniques. Special emphasis in this paper will be the challenges and opportunities in fuel processing for fuel cells.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Huppmann, Gerhard. « The MTU Carbonate Fuel Cell HotModule® : Utilization of Biomass and Waste Originated Fuels for Polygeneration in Fuel Cells ». Dans ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97120.

Texte intégral
Résumé :
MTU’s HotModule is a High Temperature Molten Carbonate Fuel Cell System. It transfers the chemical energy of the fuel directly to electricity, heat and a useful depleted air with an electrical efficiency in the range of 42 to 52%. It convinces by minimal emissions of contaminants. The produced heat is given by the depleted air at a temperature level of 400 °C; this ensures a multi purpose and valuable utilization of the heat. The HotModule operated with natural gas is demonstrated meanwhile together with our partner Fuel Cell Energy Inc. in approximately 25 field trial plants and reached now a pre-commercial status. It is highly suitable for the utilization of hydrocarboneous gases, such as biogas, sewage gas, coal mine gas, of synthesis gases from thermal gasification processes of different waste material. Such gases are the most important renewable energy resources. In case of a consequent utilization of such gases for Combined Heat and Power Production a contribution of 12% to 15% of stationary consumable energy consumption can be reached. Even lean gases will be converted with high efficiency to electrical power and high exergetic heat. These characteristics recommend the HotModule for applications using the big potential of regenerative and secondary fuels with all their advantages in decentralized consumable energy supply, reduction of dependence on primary energy imports and reduction of greenhouse gas and other contaminants emission. MTU started recently a HotModule fed by methanol from waste material together with BEWAG in Berlin and many experimental work concerning applications with biogas and sewage gas has been performed with promising results. Due to the high electrical efficiency the HotModule saves about 1/3 of CO2 emission in comparison to conventional “prime movers”. If fuels are used, which are originated from renewable sources like biomass via fermentation or gasification, the balance of CO2 is zero within a suitable short period (in comparison to coal, natural gas and oil, where this period is some millions of years). The advantage of the Carbonate Fuel Cell HotModule is, that these fuel gases from the renewable sources can be used with the high performance and efficiency of the HotModule, even they are low caloric gases, which decline the electric efficiency of conventional prime movers significantly. The products of the HotModule are: • Electricity: DC for telecommunication and IT - AC to grid or to stand alone networks - Applications for uninterruptible power supply. • Premium Heat: Heat from HotModule is available in form of the depleted air at a high temperature. This high exergetic heat is valuable for steam production, industrial production processes as well as for many other processes e. g. in hospitals, in the food industry, in greenhouse farming. It can also be used in cascades of steam production for additional electricity generation via steam turbines, medium temperature processes like drying, cooking, and at the low temperature end for water heating and space heating and — may be — pool heating. • Cooling Power: Another important heat utilization is the production of cooling power for air conditioning and food storage facilities by thermal driven cooling systems, e. g. absorption chillers or steam injection chillers with the overlapping of the required energy amounts over the year: Cooling in summer, heating in winter. This leads to a thermal full power operation of the HotModule all over the year decreasing the pay back period of such equipment. • Fertilizing atmosphere: The depleted air consists of nitrogen, a small amount of oxygen, lots of water vapour and a substantial amount of CO2 (in the range of 5%vol). No contaminants, no toxic ingredients, no other loads. Mixed with fresh air, this depleted air is a most valuable atmosphere for greenhouse farming: Plants need the right temperature, the CO2-contents increase the growing rate of the plants (e. g. tomatoes need an average of 2%vol of CO2 in atmosphere for optimal growing; CO2-fertilizer) and the high water vapour content saves humidification water.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Franco, Egberto Gomes, Paulo Lucas Dantas Filho, Flavio Taioli, Carlos Eduardo Rollo Ribeiro et Geraldo Francisco Burani. « Ethanol Logistics for Fuel Cells Applications in Brazil ». Dans ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65174.

Texte intégral
Résumé :
One important element to reduce the impact of the present economic development model in nature is the energy generation. The need for more efficient sources of energy is evident, as the world relies on fossil fuel sources that become scarcer and expensive. Furthermore, imposes the use of clean fuels, like hydrogen and renewable primary fuels in large scale. The fuel cells technology have shown to be an interesting and very promising alternative, among others, to solve the problem of generating clean energy with high efficiency, using hydrogen, natural gas and ethanol. Hydrogen production from ethanol is an attractive technique, due to it renewable source, allowing clean energy generation. To permit that, the logistics of ethanol plays an essential role, allowing easy and full access to this fuel also in remote areas. In this article, we identify the necessary infra-structure to lead Brazil as a global player in the Hydrogen Economy. The costs of natural gas and ethanol as “carriers” were identified, pointing out weaknesses and strongest points of these primary fuels. The combination of these two technologies could drive Brazil to a clean and renewable energy source, mainly in remote areas.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Energia, Fuel cell"

1

Muelaner, Jody Emlyn. Decarbonized Power Options for Non-road Mobile Machinery. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, janvier 2023. http://dx.doi.org/10.4271/epr2023002.

Texte intégral
Résumé :
<div class="section abstract"><div class="htmlview paragraph">Power options for off-road vehicles differ substantially from other commercial vehicles. Battery electrification is suitable for urban construction and light agriculture, but remote mining, forestry, and road building operations will require alternative fuels.</div><div class="htmlview paragraph"><b>Decarbonized Power Options for Non-road Mobile Machinery</b> discusses these domains as well as the potential benefits and challenges of implementing fuels and energy sources such as bioenergy, e-fuels, and alcohol, as well as hydrogen, hydrocarbon, and direct methanol fuel cells.</div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pesaran, A., T. Markel, M. Zolot, S. Sprik, H. Tataria et T. Duong. Energy Storage Fuel Cell Vehicle Analysis. Office of Scientific and Technical Information (OSTI), août 2005. http://dx.doi.org/10.2172/859324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Storey, Robson, F., Mauritz, Kenneth, A., Patton, Derek, L. et Savin, Daniel, A. Alternate Fuel Cell Membranes for Energy Independence. Office of Scientific and Technical Information (OSTI), décembre 2012. http://dx.doi.org/10.2172/1057540.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kivisaari, T. Fuel cell systems for a sustainable energy production. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/460253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Grimes, P. Decentralized conversion of biomass to energy, fuels and electricity with fuel cells. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/460268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Morse, J., et A. Jankowski. A MEMS-Based Fuel Cell for Microscale Energy Conversion. Office of Scientific and Technical Information (OSTI), février 2002. http://dx.doi.org/10.2172/15005130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Anthony Terrinoni et Sean Gifford. A Bio-Based Fuel Cell for Distributed Energy Generation. Office of Scientific and Technical Information (OSTI), juin 2008. http://dx.doi.org/10.2172/933041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Thomas, Janice. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles. Office of Scientific and Technical Information (OSTI), août 2010. http://dx.doi.org/10.2172/1025164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jeter, Sheldon M., et S. I. Abdel-Khalik. Design of a Fuel Cell Moisture and Energy Recovery System. Fort Belvoir, VA : Defense Technical Information Center, avril 2002. http://dx.doi.org/10.21236/ada402887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

NETL. 2004 Office of Fossil Energy Fuel Cell Program Annual Report. Office of Scientific and Technical Information (OSTI), novembre 2004. http://dx.doi.org/10.2172/834189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie