Littérature scientifique sur le sujet « Endothelial membrane »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Endothelial membrane ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Endothelial membrane"
Zhang, Zhong, Kristie Payne et Thomas L. Pallone. « Syncytial communication in descending vasa recta includes myoendothelial coupling ». American Journal of Physiology-Renal Physiology 307, no 1 (1 juillet 2014) : F41—F52. http://dx.doi.org/10.1152/ajprenal.00178.2014.
Texte intégralSzczesny-Malysiak, Ewa, Marta Stojak, Roberto Campagna, Marek Grosicki, Marek Jamrozik, Patrycja Kaczara et Stefan Chlopicki. « Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium ». Oxidative Medicine and Cellular Longevity 2020 (14 octobre 2020) : 1–16. http://dx.doi.org/10.1155/2020/4678252.
Texte intégralHallmann, Rupert, Nathalie Horn, Manuel Selg, Olaf Wendler, Friederike Pausch et Lydia M. Sorokin. « Expression and Function of Laminins in the Embryonic and Mature Vasculature ». Physiological Reviews 85, no 3 (juillet 2005) : 979–1000. http://dx.doi.org/10.1152/physrev.00014.2004.
Texte intégralLovatt, Matthew, Khadijah Adnan, Gary Peh et Jodhbir Mehta. « Regulation of Oxidative Stress in Corneal Endothelial Cells by Prdx6 ». Antioxidants 7, no 12 (4 décembre 2018) : 180. http://dx.doi.org/10.3390/antiox7120180.
Texte intégralKim, Joanna, et John A. Cooper. « Septins regulate junctional integrity of endothelial monolayers ». Molecular Biology of the Cell 29, no 14 (15 juillet 2018) : 1693–703. http://dx.doi.org/10.1091/mbc.e18-02-0136.
Texte intégralMinshall, Richard D., William C. Sessa, Radu V. Stan, Richard G. W. Anderson et Asrar B. Malik. « Caveolin regulation of endothelial function ». American Journal of Physiology-Lung Cellular and Molecular Physiology 285, no 6 (décembre 2003) : L1179—L1183. http://dx.doi.org/10.1152/ajplung.00242.2003.
Texte intégralLucotte, Bertrand M., Chloe Powell, Jay R. Knutson, Christian A. Combs, Daniela Malide, Zu-Xi Yu, Mark Knepper et al. « Direct visualization of the arterial wall water permeability barrier using CARS microscopy ». Proceedings of the National Academy of Sciences 114, no 18 (3 avril 2017) : 4805–10. http://dx.doi.org/10.1073/pnas.1620008114.
Texte intégralCao, Chunhua, Whaseon Lee-Kwon, Kristie Payne, Aurélie Edwards et Thomas L. Pallone. « Descending vasa recta endothelia express inward rectifier potassium channels ». American Journal of Physiology-Renal Physiology 293, no 4 (octobre 2007) : F1248—F1255. http://dx.doi.org/10.1152/ajprenal.00278.2007.
Texte intégralDehouck, Marie-Pierre, Paul Vigne, Gérard Torpier, Jean Philippe Breittmayer, Roméo Cecchelli et Christian Frelin. « Endothelin-1 as a Mediator of Endothelial Cell–Pericyte Interactions in Bovine Brain Capillaries ». Journal of Cerebral Blood Flow & ; Metabolism 17, no 4 (avril 1997) : 464–69. http://dx.doi.org/10.1097/00004647-199704000-00012.
Texte intégralDiecke, Friedrich P. J., Quan Wen, Jose M. Sanchez, Kunyan Kuang et Jorge Fischbarg. « Immunocytochemical localization of Na+-HCO3− cotransporters and carbonic anhydrase dependence of fluid transport in corneal endothelial cells ». American Journal of Physiology-Cell Physiology 286, no 6 (juin 2004) : C1434—C1442. http://dx.doi.org/10.1152/ajpcell.00539.2003.
Texte intégralThèses sur le sujet "Endothelial membrane"
Burton, Victoria Jane. « Neutrophil migration through endothelial cells and their basement membrane ». Thesis, University of Birmingham, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532273.
Texte intégralSecor, Jordan Douglas. « Phytochemical Antioxidants Induce Membrane Lipid Signaling in Vascular Endothelial Cells ». The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1338391553.
Texte intégralKline, Michelle A. « Membrane cholesterol regulates vascular endothelial cell viability, function, and lipid signaling ». Connect to resource, 2008. http://hdl.handle.net/1811/32175.
Texte intégralAlhumaid, Haidar S. « Nanoanalytical Studies of Bacterial Adhesion to the Membrane of Endothelial Cells ». Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1470946411.
Texte intégralLevy, Somin Gabriel. « The iridocorneal-endothelial syndrome : a study of cell and basement membrane pathology ». Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309311.
Texte intégralCharles-Orszag, Arthur. « Cellular and molecular mechanisms of human endothelial cell plasma membrane remodeling by Neisseria meningitidis ». Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB045/document.
Texte intégralNeisseria meningitidis is a diderm bacterium that is naturally found in the human nasopharynx as a commensal. Occasionally, it can cross the mucosa and reach the underlying blood vessels where it enters the circulation. Once in the bloodstream, it can cause severe septic shock and/or meningitis. The ability of N. meningitidis to cause disease is tightly linked to its ability to interact with human endothelial cells. In particular, upon bacterial adhesion via filamentous organelles called type IV pili, bacteria remodel the host cell plasma membrane in the form of actin-rich, filopodia-like protrusions. These protrusions allow bacteria to resist blood flow-generated shear stress and proliferate on top of the host cells. Unlike many other bacterial pathogens, plasma membrane remodeling induced by N. meningitidis does not require actin polymerization. Yet, the cellular and molecular mechanisms of this process are unknown. Here, we show that upon adhesion of individual bacteria, the host cell plasma membrane deforms by adhering along type IV pili fibers in a wetting-like fashion. Therefore, type IV pili act as an extracellular scaffold that guide plasma membrane protrusions in an F-actin-independent manner. We further show that the ability of the plasma membrane to deform along nanoscale adhesive structures is an intrinsic property of endothelial cells. Therefore, this study uncovers the mechanism of a key step of N. meningitidis pathophysiology and reveals novel properties of human cell plasma membrane that could be at play in other fundamental cellular processes
Saavedra, García Paula. « FABP4 : interactions with endothelial cell plasma membrane and effects on vascular smooth muscle cells ». Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/348560.
Texte intégralFatty acid-binding protein 4 (FABP4) es una adipoquina secretada por el tejido adiposo implicada en la regulación del metabolismo energético y la inflamación. Se han detectado niveles elevados de FABP4 circulante en personas con factores de riesgo cardiovascular y aterosclerosis, aunque no hay muchos datos sobre FABP4 y aterosclerosis en humanos. Algunos estudios han demostrado que FABP4 tiene un efecto directo sobre los tejidos periféricos, concretamente promoviendo la disfunción endotelial. La disfunción endotelial juega un papel crucial en el desarrollo de lesiones ateroscleróticas, así como la migración y proliferación de células de músculo liso vascular. Sin embargo, el mecanismo de acción y las funciones de FABP4 circulante son desconocidos. La hipótesis de este trabajo es que FABP4 interacciona con tejidos periféricos contribuyendo a la disfunción endotelial y remodelación vascular a partir de la interacción con proteínas de membrana plasmática, que actuarían como elementos de anclaje y/o receptores mediando rutas de señalización intracelular, y/o internalización. Nuestros resultados indican que FABP4 exógena interactúa específicamente con citoqueratina 1 (CK1) en las membranas celulares endoteliales y su inhibición farmacológica por BMS309403 disminuye ligeramente la formación de estos complejos. Además, FABP4 exógena atraviesa la membrana plasmática para entrar en el citoplasma y núcleo de células endoteliales (HUVECs). También hemos demostrado que FABP4 exógena también forma un complejo con CK1 en las células del músculo liso vascular (HCASMCs) y que tiene un efecto directo sobre la migración y proliferación de HCASMCs a través de la activación de la vía de señalización MAPK por la fosforilación de ERK1/2 y activación los factores de transcripción nucleares c-myc y c-jun. Estos resultados sugieren que FABP4 circulante podría tener un papel en el remodelado vascular y en la progresión de la aterosclerosis. Estos datos contribuyen a nuestro conocimiento actual sobre el mecanismo de acción de FABP4 circulante.
Fatty acid-binding protein 4 (FABP4) is an adipose tissue-secreted adipokine that is involved in the regulation of energetic metabolism and inflammation. Increased levels of circulating FABP4 have been detected in individuals with cardiovascular risk factors and atherosclerosis, although there is not much data on FABP4 in human atherosclerosis. Some studies have demonstrated that FABP4 has a direct effect on peripheral tissues, specifically promoting endothelial dysfunction. Endothelial dysfunction plays crucial roles in the development of atherosclerotic lesions as well as migration and proliferation of vascular smooth muscle cells. However, the mechanism of action and functions of circulating FABP4 are unknown. The hypothesis of this study is that circulating FABP4 has a direct effect on peripheral tissues. In particular at vessel wall level, FABP4 contributes to endothelial dysfunction and artery wall remodelling through interaction with endothelial plasma membrane proteins that act as anchoring elements and/or receptors mediating intracellular signalling, and/or FABP4 internalization. FABP4 acts on smooth muscle cells influencing cell migration and proliferation as well. Our results indicate that exogenous FABP4 interacts with specifically CK1 on endothelial cell membranes and the pharmacological FABP4 inhibition by BMS309403 decreases the formation of these complexes slightly. Furthermore, exogenous FABP4 crosses the plasma membrane to enter the cytoplasm and nucleus in HUVECs. In addition, we also demonstrated that exogenous FABP4 forms a complex with CK1 on vascular smooth muscle cells (HCASMCs) and has a direct effect of FABP4 on the migration and proliferation of HCASMCs through the activation of the ERK1/2 MAPK signalling pathway and activating the nuclear transcription factors c-myc and c-jun. Taking all these results together, it suggests that circulating FABP4 could have a role in vascular remodelling and atherosclerosis progression. These data contribute to our current knowledge regarding the mechanism of action of circulating FABP4.
Brockmann, Tobias [Verfasser]. « Klinisch-experimentelle Ergebnisse nach „Descemet Membrane Endothelial Keratoplasty“ unter Verwendung von Trypanblau / Tobias Brockmann ». Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2019. http://d-nb.info/1191180875/34.
Texte intégralWardeh, Rima [Verfasser], et Walter [Akademischer Betreuer] Sekundo. « Long-Term Results after DMEK (Descemet’s Membrane Endothelial Keratoplasty) / Rima Wardeh ; Betreuer : Walter Sekundo ». Marburg : Philipps-Universität Marburg, 2020. http://d-nb.info/1205879730/34.
Texte intégralSandberg, Christina Ann. « Vascular Endothelial Growth Factor in the Aqueous Humor of Dogs With and Without Intraocular Disease ». Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/43367.
Texte intégralMaster of Science
Livres sur le sujet "Endothelial membrane"
Jacob, Soosan. Descemet’s Membrane Endothelial Keratoplasty. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2034-9.
Texte intégralHorst, Robenek, et Severs Nicholas J, dir. Cell interactions in atherosclerosis. Boca Raton : CRC, 1992.
Trouver le texte intégralKnabb, Maureen, D. Neil Granger, Rafael Rubio et Joey P. Granger. Endothelial Luminal Membrane-Glycocalyx : Functionalities in Health and Disease. Morgan & Claypool Life Science Publishers, 2017.
Trouver le texte intégralKnabb, Maureen, D. Neil Granger, Rafael Rubio et Joey P. Granger. Endothelial Luminal Membrane-Glycocalyx : Functionalities in Health and Disease. Morgan & Claypool Life Science Publishers, 2017.
Trouver le texte intégralKnabb, Maureen, D. Neil Granger, Rafael Rubio et Joey P. Granger. Endothelial Luminal Membrane-Glycocalyx : Functionalities in Health and Disease. Morgan & Claypool Life Science Publishers, 2017.
Trouver le texte intégral1951-, Price Francis W., et Price Marianne O. 1952-, dir. DSEK : What you need to know about endothelial keratoplasty. Thorofare, NJ : SLACK Inc., 2009.
Trouver le texte intégralAlmeda, Dariela. Investigating the effect of liposomal membrane fluidity and antibody lateral mobility on endothelial cell targeting. 2014.
Trouver le texte intégralLennon, Rachel, et Neil Turner. The molecular basis of glomerular basement membrane disorders. Sous la direction de Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0320_update_001.
Texte intégralWare, Lorraine B. Pathophysiology of acute respiratory distress syndrome. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0108.
Texte intégralElger, Marlies, et Wilhelm Kriz. The renal glomerulus. Sous la direction de Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0043.
Texte intégralChapitres de livres sur le sujet "Endothelial membrane"
Satué, María, Fook Chang Lam, Isabel Dapena, Marieke Bruinsma et Gerrit R. J. Melles. « Descemet Membrane Endothelial Transfer (DMET) ». Dans Mastering Endothelial Keratoplasty, 239–51. New Delhi : Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2818-9_15.
Texte intégralKirkpatrick, C. James, Helma Rixen, Thomas Axer, Ursula Schmitz, Guenter Hollweg, Doris Klee, Rudi Wajda, Martin Kampe, Eike Fischer et Christian Mittermayer. « Endothelial Cell-Basement Membrane Interactions ». Dans Vascular Dynamics, 135–48. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7856-3_11.
Texte intégralShah, Shaily Dinesh, Ashley Brissette et Christopher S. Sales. « Descemet’s Membrane Endothelial Keratoplasty (DMEK) ». Dans Operative Dictations in Ophthalmology, 69–76. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-53058-7_16.
Texte intégralSáles, Christopher S., Zachary M. Mayko, Mark A. Terry et Michael D. Straiko. « Descemet Membrane Endothelial Keratoplasty (DMEK) Surgery with a Standardized Technique ». Dans Mastering Endothelial Keratoplasty, 143–71. New Delhi : Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2818-9_9.
Texte intégralPlante, Gérard E., et Mouna Chakir. « Passive Endothelial Transport : Studies in Experimental Arterial Hypertension, Diabetes Mellitus and Chronic Renal Failure ». Dans Membrane Physiopathology, 185–206. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2616-2_12.
Texte intégralJacob, Soosan. « Techniques for Graft Visualization and Identification of Graft Orientation : Endoilluminator-Assisted Descemet’s Membrane Endothelial Keratoplasty (E-DMEK) and Others ». Dans Mastering Endothelial Keratoplasty, 217–26. New Delhi : Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2818-9_13.
Texte intégralBhagyalaksmi, A., et J. A. Frangos. « Membrane Phospholipid Metabolism in Sheared Endothelial Cells ». Dans Biofluid Mechanics, 533. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-52338-0_67.
Texte intégralMourik, J. A., J. C. Giltay, O. C. Leeksma et J. Zandbergen-Spaargaren. « Membrane glycoproteins of endothelial cells and platelets ». Dans Molecular Biology of the Arterial Wall, 148–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83118-8_47.
Texte intégralBlock, Edward R. « Factors Affecting the Fluidity of the Endothelial Cell Plasma Membrane ». Dans Vascular Endothelium, 29–42. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-8532-5_3.
Texte intégralHagedorn, Martin, et Jörg Wilting. « Chick Chorioallantoic Membrane Assay : Growth Factor and Tumor-induced Angiogenesis and Lymphangiogenesis ». Dans Methods in Endothelial Cell Biology, 247–61. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18725-4_23.
Texte intégralActes de conférences sur le sujet "Endothelial membrane"
Shao, Jin-Yu, et Baoyu Liu. « Cellular Membrane Tether Retraction : Experiment and Model ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80760.
Texte intégralGarcía-Onrubia, Luis, Nick Stanojcic, Jing Hua et Maninder Bhogal. « OP-4 Descemet membrane endothelial keratoplasty patching (DMEP) – selective endothelial replacement in eyes with localised endothelial dysfunction ». Dans 2022 Proceedings of the Bowman Club Meeting, 25th March. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/bmjophth-2022-bcm.4.
Texte intégralBaudin, B., L. Drouet, J. L. Carrier, M. Bérard et Q. Y. Wu. « DISTRIBUTION OF ENDOTHELIAL MARKERS ALONG THE VASCULAR TREE ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643357.
Texte intégralTabouillot, Tristan, Hari S. Muddana et Peter J. Butler. « Shear Stress Induces Time- and Domain-Dependent Changes in Lipid Dynamics of Endothelial Cell Membranes ». Dans ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206882.
Texte intégralBelvitch, Patrick, Mary Brown, Sara Camp, Djanybek Adyshev, Jessica Siegler, Joe G. N. Garcia et Steven Dudek. « Cortactin Regulates Pulmonary Endothelial Cytoskeletal Structure And Membrane Dynamics ». Dans American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5512.
Texte intégralGroeneveld-van Beek, Esther A., Kaemela Vasanthananthan, Jessica T. Lie, GerritRJ Melles, Jacqueline van der Wees, Silke Oellerich et Viridiana Kocaba. « 32 Corneal guttae after descemet membrane endothelial keratoplasty (DMEK) ». Dans Abstracts of the European Eye Bank Association Virtual Meeting, 3–5 March 2022. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/bmjophth-2022-eeba.32.
Texte intégralFu, Lana, et Emma J. Hollick. « P-14 Descemet stripping endothelial keratoplasty versus Descemet membrane endothelial keratoplasty : 5-year graft survival and endothelial cell loss in patients with Fuchs’ endothelial dystrophy ». Dans 2022 Proceedings of the Bowman Club Meeting, 25th March. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/bmjophth-2022-bcm.11.
Texte intégralKudo, Susumu, Ryoma Morigaki, Mariko Ikeda, Kotaro Oka et Kazuo Tanishita. « Effect of Shear Stress on Mitochondrial Membrane Potential of Cultured Endothelial Cells ». Dans ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0229.
Texte intégralRichardson, M., et R. M. K. W. Lee. « ENDOTHELIAL BASEMENT MEMBRANE PROTEOGLYCAN (PG) ALTERATIONS IN DEOXYCORTICOSTERONE (DOCA)-NaCl -INDUCED HYPERTENSIVE RAT MESENTERIC ARTERIES ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644893.
Texte intégralSchen, Aaron, Baoguo Chen et Lisa X. Xu. « Preliminary Study of Vascular Endothelial Ca2+ Response to Elevated Temperature ». Dans ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24424.
Texte intégralRapports d'organisations sur le sujet "Endothelial membrane"
Yamamoto, Fumichiro. Phage Display Breast Carcinoma cDNA Libraries : Isolation of Clones Which Specifically Bind to Membrane Glycoproteins, Mucins, and Endothelial Cell Surface. Fort Belvoir, VA : Defense Technical Information Center, juillet 2001. http://dx.doi.org/10.21236/ada398247.
Texte intégralYamamoto, Fumiichiro. Phage Display Breast Carcinoma cDNA Libraries : Isolation of Clones Which Specifically Bind to Membrane Glycoproteins, Mucins, and Endothelial Cell Surface. Fort Belvoir, VA : Defense Technical Information Center, juillet 2000. http://dx.doi.org/10.21236/ada393178.
Texte intégral