Articles de revues sur le sujet « Endosomal TLRs »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Endosomal TLRs ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Sato, Ryota, Tatjana Reuter, Ryosuke Hiranuma, et al. "The impact of cell maturation and tissue microenvironments on the expression of endosomal Toll-like receptors in monocytes and macrophages." International Immunology 32, no. 12 (2020): 785–98. http://dx.doi.org/10.1093/intimm/dxaa055.
Texte intégralLuchner, Marina, Sören Reinke, and Anita Milicic. "TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases." Pharmaceutics 13, no. 2 (2021): 142. http://dx.doi.org/10.3390/pharmaceutics13020142.
Texte intégralPatra, Mahesh Chandra, Asma Achek, Gi-Young Kim, et al. "A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models." Cells 9, no. 7 (2020): 1648. http://dx.doi.org/10.3390/cells9071648.
Texte intégralHung, Yun-Fen, Chiung-Ya Chen, Yi-Chun Shih, Hsin-Yu Liu, Chiao-Ming Huang, and Yi-Ping Hsueh. "Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs." Journal of Cell Biology 217, no. 8 (2018): 2727–42. http://dx.doi.org/10.1083/jcb.201712113.
Texte intégralVeneziani, Irene, Claudia Alicata, Andrea Pelosi, et al. "Toll-like receptor 8 agonists improve NK-cell function primarily targeting CD56brightCD16− subset." Journal for ImmunoTherapy of Cancer 10, no. 1 (2022): e003385. http://dx.doi.org/10.1136/jitc-2021-003385.
Texte intégralGallego, Carolina, Douglas Golenbock, Maria Adelaida Gomez, and Nancy Gore Saravia. "Toll-Like Receptors Participate in Macrophage Activation and Intracellular Control of Leishmania (Viannia) panamensis." Infection and Immunity 79, no. 7 (2011): 2871–79. http://dx.doi.org/10.1128/iai.01388-10.
Texte intégralMandraju, Rajakumar, Sean Murray, James Forman, and Chandrashekhar Pasare. "Differential regulation of CD8 T cell responses by surface and endosomal TLRs (INC6P.347)." Journal of Immunology 192, no. 1_Supplement (2014): 121.14. http://dx.doi.org/10.4049/jimmunol.192.supp.121.14.
Texte intégralMcAlpine, William, Lei Sun, Kuan-wen Wang, et al. "Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function." Proceedings of the National Academy of Sciences 115, no. 49 (2018): E11523—E11531. http://dx.doi.org/10.1073/pnas.1814753115.
Texte intégralAverett, D. R., S. P. Fletcher, W. Li, S. E. Webber, and J. R. Appleman. "The pharmacology of endosomal TLR agonists in viral disease." Biochemical Society Transactions 35, no. 6 (2007): 1468–72. http://dx.doi.org/10.1042/bst0351468.
Texte intégralOhto, Umeharu, Hiromi Tanji, Takuma Shibata, et al. "Structural studies of nucleic acid sensing Toll-like receptor." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C252. http://dx.doi.org/10.1107/s2053273314097472.
Texte intégralLai, Chao-Yang, Yu-Wen Su, Kuo-I. Lin, Li-Chung Hsu, and Tsung-Hsien Chuang. "Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation." Journal of Immunology Research 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/7807313.
Texte intégralBaumann, Christoph L., Irene M. Aspalter, Omar Sharif, et al. "CD14 is a coreceptor of Toll-like receptors 7 and 9." Journal of Experimental Medicine 207, no. 12 (2010): 2689–701. http://dx.doi.org/10.1084/jem.20101111.
Texte intégralMielcarska, Matylda Barbara, Magdalena Bossowska-Nowicka, Karolina Paulina Gregorczyk, Zbigniew Wyzewski, and Felix Ngosa Toka. "Tyrosine kinase Syk interacts with Hrs after TLR3 stimulation in murine microglial cells." Journal of Immunology 198, no. 1_Supplement (2017): 129.17. http://dx.doi.org/10.4049/jimmunol.198.supp.129.17.
Texte intégralVeneziani, Irene, Claudia Alicata, Lorenzo Moretta, and Enrico Maggi. "The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview." Biomedicines 11, no. 1 (2022): 64. http://dx.doi.org/10.3390/biomedicines11010064.
Texte intégralWang, Kuan-wen, Xiaoming Zhan, William McAlpine, et al. "Enhanced susceptibility to chemically induced colitis caused by excessive endosomal TLR signaling in LRBA-deficient mice." Proceedings of the National Academy of Sciences 116, no. 23 (2019): 11380–89. http://dx.doi.org/10.1073/pnas.1901407116.
Texte intégralSkert, Cristina, Manuela Fogli, Simone Perucca, et al. "Betaherpesvirus Reactivation and Toll-Like Receptor Expression After Allogeneic Stem Cell Transplantation." Blood 118, no. 21 (2011): 4924. http://dx.doi.org/10.1182/blood.v118.21.4924.4924.
Texte intégralNelson, Alexander J., and Yee Ling WU. "Toll-like receptor signaling directly modulates B cell antibody responses." Journal of Immunology 204, no. 1_Supplement (2020): 151.28. http://dx.doi.org/10.4049/jimmunol.204.supp.151.28.
Texte intégralMinton, Kirsty. "Regulation of endosomal TLRs." Nature Reviews Immunology 19, no. 11 (2019): 660–61. http://dx.doi.org/10.1038/s41577-019-0229-1.
Texte intégralWang, James Q., Bruce Beutler, Christopher C. Goodnow, and Keisuke Horikawa. "Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo." Blood 128, no. 12 (2016): 1604–8. http://dx.doi.org/10.1182/blood-2016-03-708065.
Texte intégralGanguly, Dipyaman, Georgios Chamilos, Roberto Lande, et al. "Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8." Journal of Experimental Medicine 206, no. 9 (2009): 1983–94. http://dx.doi.org/10.1084/jem.20090480.
Texte intégralAo, Da, Xueliang Liu, Sen Jiang, et al. "The Signal Peptide and Chaperone UNC93B1 Both Influence TLR8 Ectodomain Intracellular Endosomal Localization." Vaccines 10, no. 1 (2021): 14. http://dx.doi.org/10.3390/vaccines10010014.
Texte intégralLai, Chao-Yang, Da-Wei Yeh, Chih-Hao Lu, et al. "Thiostrepton inhibits psoriasis-like inflammation induced by TLR7, TLR8, and TLR9." Journal of Immunology 196, no. 1_Supplement (2016): 124.41. http://dx.doi.org/10.4049/jimmunol.196.supp.124.41.
Texte intégralElshikha, Ahmed Samir, Georges Abboud, Laurence Morel, and Sihong Song. "Targeting proteolytic cleavage of Toll-Like receptors by alpha-1 antitrypsin inhibited dendritic cells activation and function." Journal of Immunology 208, no. 1_Supplement (2022): 60.20. http://dx.doi.org/10.4049/jimmunol.208.supp.60.20.
Texte intégralMeibers, Hannah, Margaret McDaniel, and Chandrashekhar Pasare. "Vps33B is a crucial regulator of Type I Interferon response downstream of the cGAS-STING pathway." Journal of Immunology 204, no. 1_Supplement (2020): 68.13. http://dx.doi.org/10.4049/jimmunol.204.supp.68.13.
Texte intégralRusso, Carla, Ivan Cornella-Taracido, Luisa Galli-Stampino, et al. "Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells." Blood 117, no. 21 (2011): 5683–91. http://dx.doi.org/10.1182/blood-2010-12-328138.
Texte intégralParadowska-Gorycka, Agnieszka, Anna Wajda, Barbara Stypińska, et al. "The TLRs and IFNs in patients with connective tissue diseases." Postępy Polskiej Medycyny i Farmacji 7 (May 27, 2020): 1–10. http://dx.doi.org/10.5604/01.3001.0014.1583.
Texte intégralNahid, M., Lia Benso, John Shin, Huseyin Mehmet, Alexandra Hicks, and Ravisankar Ramadas. "Macrophage tolerance to MyD88-dependent TLR agonists is mediated by LPS-/R848-induced miR-146a (IRM12P.649)." Journal of Immunology 194, no. 1_Supplement (2015): 133.8. http://dx.doi.org/10.4049/jimmunol.194.supp.133.8.
Texte intégralPawar, Kamlesh, Megumi Shigematsu, Soroush Sharbati, and Yohei Kirino. "Infection-induced 5′-half molecules of tRNAHisGUG activate Toll-like receptor 7." PLOS Biology 18, no. 12 (2020): e3000982. http://dx.doi.org/10.1371/journal.pbio.3000982.
Texte intégralRadovic-Moreno, Aleksandar F., Natalia Chernyak, Christopher C. Mader, et al. "Immunomodulatory spherical nucleic acids." Proceedings of the National Academy of Sciences 112, no. 13 (2015): 3892–97. http://dx.doi.org/10.1073/pnas.1502850112.
Texte intégralLeavy, Olive. "AP3 links endosomal TLRs and antigen presentation." Nature Reviews Immunology 12, no. 6 (2012): 400. http://dx.doi.org/10.1038/nri3232.
Texte intégralLeifer, Cynthia, James Brooks, Jody Cameron, and Gabriela Chiosis. "The Heat Shock Protein gp96 play a multifaceted role in regulating Toll-like receptor 9 (136.40)." Journal of Immunology 184, no. 1_Supplement (2010): 136.40. http://dx.doi.org/10.4049/jimmunol.184.supp.136.40.
Texte intégralPark, Se-Ra, Dong-Jae Kim, Seung-Hyun Han, et al. "Diverse Toll-Like Receptors Mediate Cytokine Production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in Macrophages." Infection and Immunity 82, no. 5 (2014): 1914–20. http://dx.doi.org/10.1128/iai.01226-13.
Texte intégralKiefer, Kerstin, Nathaniel Green, Michael Oropallo, Michael Cancro, and Ann Marshak-Rothstein. "BCR/TLR7 coligation uniquely drives plasma cell differentiation of autoreactive B cells (171.34)." Journal of Immunology 188, no. 1_Supplement (2012): 171.34. http://dx.doi.org/10.4049/jimmunol.188.supp.171.34.
Texte intégralLin, You-Sheng, Yung-Chi Chang, Ting-Yu Lai, Chih-Yuan Lee, Tsung-Hsien Chuang, and Li-Chung Hsu. "The role of novel E3 ubiquitin ligase in the regulation of TLR3 signaling pathway." Journal of Immunology 204, no. 1_Supplement (2020): 226.26. http://dx.doi.org/10.4049/jimmunol.204.supp.226.26.
Texte intégralMukhopadhyay, Subhankar, Audrey Varin, Yunying Chen, Baoying Liu, Karl Tryggvason, and Siamon Gordon. "SR-A/MARCO–mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens." Blood 117, no. 4 (2011): 1319–28. http://dx.doi.org/10.1182/blood-2010-03-276733.
Texte intégralShehab, Marwa, Rana Jammaz, Noor Salloum, and Elias A. Rahal. "Endosomal Toll-Like Receptors (TLRs) mediate enhancement of IL-17A production triggered by Epstein-Barr virus (EBV) DNA in mice." Journal of Infection in Developing Countries 12, no. 02.1 (2018): 26S. http://dx.doi.org/10.3855/jidc.10074.
Texte intégralLentini, Germana, Agata Famà, Giuseppe Valerio De Gaetano, et al. "Role of Endosomal TLRs in Staphylococcus aureus Infection." Journal of Immunology 207, no. 5 (2021): 1448–55. http://dx.doi.org/10.4049/jimmunol.2100389.
Texte intégralDela Justina, Vanessa, Fernanda R. Giachini, Fernanda Priviero, and R. Clinton Webb. "Double-stranded RNA and Toll-like receptor activation: a novel mechanism for blood pressure regulation." Clinical Science 134, no. 2 (2020): 303–13. http://dx.doi.org/10.1042/cs20190913.
Texte intégralLehnardt, Seija, Thomas Wallach, Vitka Gres, and Philipp Henneke. "Guardians of neuroimmunity – Toll-like receptors and their RNA ligands." Neuroforum 25, no. 3 (2019): 185–93. http://dx.doi.org/10.1515/nf-2018-0032.
Texte intégralMielcarska, Matylda Barbara, Justyna Struzik, and Felix Ngosa Toka. "Tlr3 interacts with ESCRT-I components Tsg101 and Hcrp1 in mouse astrocyte cell line." Journal of Immunology 206, no. 1_Supplement (2021): 15.02. http://dx.doi.org/10.4049/jimmunol.206.supp.15.02.
Texte intégralLu, Chih-Hao, Chao-Yang Lai, Da-Wei Yeh, et al. "Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation." Mediators of Inflammation 2018 (December 16, 2018): 1–14. http://dx.doi.org/10.1155/2018/3523642.
Texte intégralDominguez, Donye, Natalia Chernyak, Monica guan, et al. "Robust antitumor effects of SNA-based T cell therapy." Journal of Immunology 202, no. 1_Supplement (2019): 134.7. http://dx.doi.org/10.4049/jimmunol.202.supp.134.7.
Texte intégralJiang, Lihua, Liyi Pei, Ping Wang, et al. "Molecular Characterization and Evolution Analysis of Two Forms of TLR5 and TLR13 Genes Base on Larimichthys crocea Genome Data." International Journal of Genomics 2020 (December 9, 2020): 1–17. http://dx.doi.org/10.1155/2020/4895037.
Texte intégralKhan, Burhan, Piyali Mukherjee, Katherine Taylor, Tyson Woods, Clayton Winkler, and Karin Peterson. "The role of SARM1 in Toll-like receptor and viral-induced neuronal apoptosis (INM7P.347)." Journal of Immunology 194, no. 1_Supplement (2015): 194.4. http://dx.doi.org/10.4049/jimmunol.194.supp.194.4.
Texte intégralCasiraghi, Costanza, Tatiana Gianni та Gabriella Campadelli-Fiume. "αvβ3 Integrin Boosts the Innate Immune Response Elicited in Epithelial Cells through Plasma Membrane and Endosomal Toll-Like Receptors". Journal of Virology 90, № 8 (2016): 4243–48. http://dx.doi.org/10.1128/jvi.03175-15.
Texte intégralHorton, Christopher G., Zi-jian Pan, and A. Darise Farris. "Targeting Toll-Like Receptors for Treatment of SLE." Mediators of Inflammation 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/498980.
Texte intégralAndón, Fernando Torres, Sergio Leon, Aldo Ummarino, et al. "Innate and Adaptive Responses of Intratumoral Immunotherapy with Endosomal Toll-Like Receptor Agonists." Biomedicines 10, no. 7 (2022): 1590. http://dx.doi.org/10.3390/biomedicines10071590.
Texte intégralMcDaniel, Margaret, Charles Tracy, Helmut Kramer, and Chandrashekhar Pasare. "Role of Vps33B in regulation of inflammatory responses." Journal of Immunology 200, no. 1_Supplement (2018): 46.10. http://dx.doi.org/10.4049/jimmunol.200.supp.46.10.
Texte intégralDondalska, Aleksandra, Sandra Axberg Pålsson, and Anna-Lena Spetz. "Is There a Role for Immunoregulatory and Antiviral Oligonucleotides Acting in the Extracellular Space? A Review and Hypothesis." International Journal of Molecular Sciences 23, no. 23 (2022): 14593. http://dx.doi.org/10.3390/ijms232314593.
Texte intégralHatton, Alexis Alexandria, Kelly Shepardson, Yang Wang, et al. "Unique MyD88/TRAM signaling post TLR2/6 recognition of conserved viral architectures results in anti-viral immunity and improved clearance of secondary bacterial infection." Journal of Immunology 204, no. 1_Supplement (2020): 70.9. http://dx.doi.org/10.4049/jimmunol.204.supp.70.9.
Texte intégral